Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrfmvdn0 Unicode version

Theorem pmtrfmvdn0 27065
Description: A transpositon moves at least one point. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfmvdn0  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  =/=  (/) )

Proof of Theorem pmtrfmvdn0
StepHypRef Expression
1 2on0 6662 . 2  |-  2o  =/=  (/)
2 pmtrrn.t . . . . . . . 8  |-  T  =  (pmTrsp `  D )
3 pmtrrn.r . . . . . . . 8  |-  R  =  ran  T
4 eqid 2380 . . . . . . . 8  |-  dom  ( F  \  _I  )  =  dom  ( F  \  _I  )
52, 3, 4pmtrfrn 27062 . . . . . . 7  |-  ( F  e.  R  ->  (
( D  e.  _V  /\ 
dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o )  /\  F  =  ( T `  dom  ( F  \  _I  ) ) ) )
65simpld 446 . . . . . 6  |-  ( F  e.  R  ->  ( D  e.  _V  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  ~~  2o ) )
76simp3d 971 . . . . 5  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
8 enen1 7176 . . . . 5  |-  ( dom  ( F  \  _I  )  ~~  2o  ->  ( dom  ( F  \  _I  )  ~~  (/)  <->  2o  ~~  (/) ) )
97, 8syl 16 . . . 4  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  ~~  (/)  <->  2o  ~~  (/) ) )
10 en0 7099 . . . 4  |-  ( dom  ( F  \  _I  )  ~~  (/)  <->  dom  ( F  \  _I  )  =  (/) )
11 en0 7099 . . . 4  |-  ( 2o 
~~  (/)  <->  2o  =  (/) )
129, 10, 113bitr3g 279 . . 3  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  =  (/)  <->  2o  =  (/) ) )
1312necon3bid 2578 . 2  |-  ( F  e.  R  ->  ( dom  ( F  \  _I  )  =/=  (/)  <->  2o  =/=  (/) ) )
141, 13mpbiri 225 1  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2543   _Vcvv 2892    \ cdif 3253    C_ wss 3256   (/)c0 3564   class class class wbr 4146    _I cid 4427   dom cdm 4811   ran crn 4812   ` cfv 5387   2oc2o 6647    ~~ cen 7035  pmTrspcpmtr 27046
This theorem is referenced by:  psgnunilem3  27081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-1o 6653  df-2o 6654  df-er 6834  df-en 7039  df-fin 7042  df-pmtr 27047
  Copyright terms: Public domain W3C validator