Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrfval Unicode version

Theorem pmtrfval 27496
Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrfval  |-  ( D  e.  V  ->  T  =  ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
Distinct variable groups:    y, p, z, D    T, p, y, z    z, V
Allowed substitution hints:    V( y, p)

Proof of Theorem pmtrfval
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . 2  |-  T  =  (pmTrsp `  D )
2 elex 2809 . . 3  |-  ( D  e.  V  ->  D  e.  _V )
3 pweq 3641 . . . . . 6  |-  ( d  =  D  ->  ~P d  =  ~P D
)
4 rabeq 2795 . . . . . 6  |-  ( ~P d  =  ~P D  ->  { y  e.  ~P d  |  y  ~~  2o }  =  { y  e.  ~P D  | 
y  ~~  2o } )
53, 4syl 15 . . . . 5  |-  ( d  =  D  ->  { y  e.  ~P d  |  y  ~~  2o }  =  { y  e.  ~P D  |  y  ~~  2o } )
6 mpteq1 4116 . . . . 5  |-  ( d  =  D  ->  (
z  e.  d  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) )  =  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )
75, 6mpteq12dv 4114 . . . 4  |-  ( d  =  D  ->  (
p  e.  { y  e.  ~P d  |  y  ~~  2o }  |->  ( z  e.  d 
|->  if ( z  e.  p ,  U. (
p  \  { z } ) ,  z ) ) )  =  ( p  e.  {
y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. (
p  \  { z } ) ,  z ) ) ) )
8 df-pmtr 27488 . . . 4  |- pmTrsp  =  ( d  e.  _V  |->  ( p  e.  { y  e.  ~P d  |  y  ~~  2o }  |->  ( z  e.  d 
|->  if ( z  e.  p ,  U. (
p  \  { z } ) ,  z ) ) ) )
9 vex 2804 . . . . . . 7  |-  d  e. 
_V
109pwex 4209 . . . . . 6  |-  ~P d  e.  _V
1110rabex 4181 . . . . 5  |-  { y  e.  ~P d  |  y  ~~  2o }  e.  _V
1211mptex 5762 . . . 4  |-  ( p  e.  { y  e. 
~P d  |  y 
~~  2o }  |->  ( z  e.  d  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )  e.  _V
137, 8, 12fvmpt3i 5621 . . 3  |-  ( D  e.  _V  ->  (pmTrsp `  D )  =  ( p  e.  { y  e.  ~P D  | 
y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
142, 13syl 15 . 2  |-  ( D  e.  V  ->  (pmTrsp `  D )  =  ( p  e.  { y  e.  ~P D  | 
y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
151, 14syl5eq 2340 1  |-  ( D  e.  V  ->  T  =  ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801    \ cdif 3162   ifcif 3578   ~Pcpw 3638   {csn 3653   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   ` cfv 5271   2oc2o 6489    ~~ cen 6876  pmTrspcpmtr 27487
This theorem is referenced by:  pmtrval  27497  pmtrrn  27502  pmtrfrn  27503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-pmtr 27488
  Copyright terms: Public domain W3C validator