Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrprfv Unicode version

Theorem pmtrprfv 27396
Description: In a transposition of two given points, each maps to the other. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrprfv  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  (
( T `  { X ,  Y }
) `  X )  =  Y )

Proof of Theorem pmtrprfv
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  D  e.  V )
2 simpr1 961 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  X  e.  D )
3 simpr2 962 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  Y  e.  D )
4 prssi 3771 . . . 4  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  { X ,  Y }  C_  D )
52, 3, 4syl2anc 642 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  { X ,  Y }  C_  D
)
6 pr2nelem 7634 . . . 4  |-  ( ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y )  ->  { X ,  Y }  ~~  2o )
76adantl 452 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  { X ,  Y }  ~~  2o )
8 pmtrfval.t . . . 4  |-  T  =  (pmTrsp `  D )
98pmtrfv 27395 . . 3  |-  ( ( ( D  e.  V  /\  { X ,  Y }  C_  D  /\  { X ,  Y }  ~~  2o )  /\  X  e.  D )  ->  (
( T `  { X ,  Y }
) `  X )  =  if ( X  e. 
{ X ,  Y } ,  U. ( { X ,  Y }  \  { X } ) ,  X ) )
101, 5, 7, 2, 9syl31anc 1185 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  (
( T `  { X ,  Y }
) `  X )  =  if ( X  e. 
{ X ,  Y } ,  U. ( { X ,  Y }  \  { X } ) ,  X ) )
11 prid1g 3732 . . . . 5  |-  ( X  e.  D  ->  X  e.  { X ,  Y } )
122, 11syl 15 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  X  e.  { X ,  Y } )
13 iftrue 3571 . . . 4  |-  ( X  e.  { X ,  Y }  ->  if ( X  e.  { X ,  Y } ,  U. ( { X ,  Y }  \  { X }
) ,  X )  =  U. ( { X ,  Y }  \  { X } ) )
1412, 13syl 15 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  if ( X  e.  { X ,  Y } ,  U. ( { X ,  Y }  \  { X }
) ,  X )  =  U. ( { X ,  Y }  \  { X } ) )
15 difprsn 3756 . . . . . . 7  |-  ( { X ,  Y }  \  { X } ) 
C_  { Y }
1615a1i 10 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  ( { X ,  Y }  \  { X } ) 
C_  { Y }
)
17 prid2g 3733 . . . . . . . . 9  |-  ( Y  e.  D  ->  Y  e.  { X ,  Y } )
183, 17syl 15 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  Y  e.  { X ,  Y } )
19 simpr3 963 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  X  =/=  Y )
2019necomd 2529 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  Y  =/=  X )
21 eldifsn 3749 . . . . . . . 8  |-  ( Y  e.  ( { X ,  Y }  \  { X } )  <->  ( Y  e.  { X ,  Y }  /\  Y  =/=  X
) )
2218, 20, 21sylanbrc 645 . . . . . . 7  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  Y  e.  ( { X ,  Y }  \  { X } ) )
2322snssd 3760 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  { Y }  C_  ( { X ,  Y }  \  { X } ) )
2416, 23eqssd 3196 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  ( { X ,  Y }  \  { X } )  =  { Y }
)
2524unieqd 3838 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  U. ( { X ,  Y }  \  { X } )  =  U. { Y } )
26 unisng 3844 . . . . 5  |-  ( Y  e.  D  ->  U. { Y }  =  Y
)
273, 26syl 15 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  U. { Y }  =  Y
)
2825, 27eqtrd 2315 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  U. ( { X ,  Y }  \  { X } )  =  Y )
2914, 28eqtrd 2315 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  if ( X  e.  { X ,  Y } ,  U. ( { X ,  Y }  \  { X }
) ,  X )  =  Y )
3010, 29eqtrd 2315 1  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  (
( T `  { X ,  Y }
) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    C_ wss 3152   ifcif 3565   {csn 3640   {cpr 3641   U.cuni 3827   class class class wbr 4023   ` cfv 5255   2oc2o 6473    ~~ cen 6860  pmTrspcpmtr 27384
This theorem is referenced by:  symggen  27411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6479  df-2o 6480  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pmtr 27385
  Copyright terms: Public domain W3C validator