Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmtrval Structured version   Unicode version

Theorem pmtrval 27373
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t  |-  T  =  (pmTrsp `  D )
Assertion
Ref Expression
pmtrval  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
Distinct variable groups:    z, D    z, T    z, P    z, V

Proof of Theorem pmtrval
Dummy variables  p  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5  |-  T  =  (pmTrsp `  D )
21pmtrfval 27372 . . . 4  |-  ( D  e.  V  ->  T  =  ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) )
32fveq1d 5732 . . 3  |-  ( D  e.  V  ->  ( T `  P )  =  ( ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P ) )
433ad2ant1 979 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P ) )
5 elpw2g 4365 . . . . . 6  |-  ( D  e.  V  ->  ( P  e.  ~P D  <->  P 
C_  D ) )
65biimpar 473 . . . . 5  |-  ( ( D  e.  V  /\  P  C_  D )  ->  P  e.  ~P D
)
763adant3 978 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  ~P D )
8 simp3 960 . . . 4  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  ~~  2o )
9 breq1 4217 . . . . 5  |-  ( y  =  P  ->  (
y  ~~  2o  <->  P  ~~  2o ) )
109elrab 3094 . . . 4  |-  ( P  e.  { y  e. 
~P D  |  y 
~~  2o }  <->  ( P  e.  ~P D  /\  P  ~~  2o ) )
117, 8, 10sylanbrc 647 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  P  e.  { y  e.  ~P D  |  y  ~~  2o } )
12 mptexg 5967 . . . 4  |-  ( D  e.  V  ->  (
z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )
13123ad2ant1 979 . . 3  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )
14 eleq2 2499 . . . . . 6  |-  ( p  =  P  ->  (
z  e.  p  <->  z  e.  P ) )
15 difeq1 3460 . . . . . . 7  |-  ( p  =  P  ->  (
p  \  { z } )  =  ( P  \  { z } ) )
1615unieqd 4028 . . . . . 6  |-  ( p  =  P  ->  U. (
p  \  { z } )  =  U. ( P  \  { z } ) )
17 eqidd 2439 . . . . . 6  |-  ( p  =  P  ->  z  =  z )
1814, 16, 17ifbieq12d 3763 . . . . 5  |-  ( p  =  P  ->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z )  =  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )
1918mpteq2dv 4298 . . . 4  |-  ( p  =  P  ->  (
z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
20 eqid 2438 . . . 4  |-  ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )  =  ( p  e.  { y  e. 
~P D  |  y 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) )
2119, 20fvmptg 5806 . . 3  |-  ( ( P  e.  { y  e.  ~P D  | 
y  ~~  2o }  /\  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) )  e.  _V )  ->  ( ( p  e. 
{ y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. ( p  \  { z } ) ,  z ) ) ) `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
2211, 13, 21syl2anc 644 . 2  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  (
( p  e.  {
y  e.  ~P D  |  y  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  p ,  U. (
p  \  { z } ) ,  z ) ) ) `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
234, 22eqtrd 2470 1  |-  ( ( D  e.  V  /\  P  C_  D  /\  P  ~~  2o )  ->  ( T `  P )  =  ( z  e.  D  |->  if ( z  e.  P ,  U. ( P  \  { z } ) ,  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 937    = wceq 1653    e. wcel 1726   {crab 2711   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ifcif 3741   ~Pcpw 3801   {csn 3816   U.cuni 4017   class class class wbr 4214    e. cmpt 4268   ` cfv 5456   2oc2o 6720    ~~ cen 7108  pmTrspcpmtr 27363
This theorem is referenced by:  pmtrfv  27374  pmtrf  27376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-pmtr 27364
  Copyright terms: Public domain W3C validator