MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmvalg Structured version   Unicode version

Theorem pmvalg 7029
Description: The value of the partial mapping operation.  ( A  ^pm  B ) is the set of all partial functions that map from  B to  A. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Distinct variable groups:    A, f    B, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem pmvalg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3428 . . 3  |-  { f  e.  ~P ( B  X.  A )  |  Fun  f }  C_  ~P ( B  X.  A
)
2 xpexg 4989 . . . . 5  |-  ( ( B  e.  D  /\  A  e.  C )  ->  ( B  X.  A
)  e.  _V )
32ancoms 440 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( B  X.  A
)  e.  _V )
4 pwexg 4383 . . . 4  |-  ( ( B  X.  A )  e.  _V  ->  ~P ( B  X.  A
)  e.  _V )
53, 4syl 16 . . 3  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ~P ( B  X.  A )  e.  _V )
6 ssexg 4349 . . 3  |-  ( ( { f  e.  ~P ( B  X.  A
)  |  Fun  f }  C_  ~P ( B  X.  A )  /\  ~P ( B  X.  A
)  e.  _V )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
71, 5, 6sylancr 645 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { f  e.  ~P ( B  X.  A
)  |  Fun  f }  e.  _V )
8 elex 2964 . . 3  |-  ( A  e.  C  ->  A  e.  _V )
9 elex 2964 . . 3  |-  ( B  e.  D  ->  B  e.  _V )
10 xpeq2 4893 . . . . . . 7  |-  ( x  =  A  ->  (
y  X.  x )  =  ( y  X.  A ) )
1110pweqd 3804 . . . . . 6  |-  ( x  =  A  ->  ~P ( y  X.  x
)  =  ~P (
y  X.  A ) )
12 rabeq 2950 . . . . . 6  |-  ( ~P ( y  X.  x
)  =  ~P (
y  X.  A )  ->  { f  e. 
~P ( y  X.  x )  |  Fun  f }  =  {
f  e.  ~P (
y  X.  A )  |  Fun  f } )
1311, 12syl 16 . . . . 5  |-  ( x  =  A  ->  { f  e.  ~P ( y  X.  x )  |  Fun  f }  =  { f  e.  ~P ( y  X.  A
)  |  Fun  f } )
14 xpeq1 4892 . . . . . . 7  |-  ( y  =  B  ->  (
y  X.  A )  =  ( B  X.  A ) )
1514pweqd 3804 . . . . . 6  |-  ( y  =  B  ->  ~P ( y  X.  A
)  =  ~P ( B  X.  A ) )
16 rabeq 2950 . . . . . 6  |-  ( ~P ( y  X.  A
)  =  ~P ( B  X.  A )  ->  { f  e.  ~P ( y  X.  A
)  |  Fun  f }  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
1715, 16syl 16 . . . . 5  |-  ( y  =  B  ->  { f  e.  ~P ( y  X.  A )  |  Fun  f }  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
18 df-pm 7021 . . . . 5  |-  ^pm  =  ( x  e.  _V ,  y  e.  _V  |->  { f  e.  ~P ( y  X.  x
)  |  Fun  f } )
1913, 17, 18ovmpt2g 6208 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  {
f  e.  ~P ( B  X.  A )  |  Fun  f }  e.  _V )  ->  ( A 
^pm  B )  =  { f  e.  ~P ( B  X.  A
)  |  Fun  f } )
20193expia 1155 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
218, 9, 20syl2an 464 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( { f  e. 
~P ( B  X.  A )  |  Fun  f }  e.  _V  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } ) )
227, 21mpd 15 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A  ^pm  B
)  =  { f  e.  ~P ( B  X.  A )  |  Fun  f } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   _Vcvv 2956    C_ wss 3320   ~Pcpw 3799    X. cxp 4876   Fun wfun 5448  (class class class)co 6081    ^pm cpm 7019
This theorem is referenced by:  elpmg  7032
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-pm 7021
  Copyright terms: Public domain W3C validator