MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pncan3 Unicode version

Theorem pncan3 9059
Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
Assertion
Ref Expression
pncan3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )

Proof of Theorem pncan3
StepHypRef Expression
1 eqid 2283 . 2  |-  ( B  -  A )  =  ( B  -  A
)
2 simpr 447 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
3 simpl 443 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
4 subcl 9051 . . . 4  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  A
)  e.  CC )
54ancoms 439 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
6 subadd 9054 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC  /\  ( B  -  A )  e.  CC )  ->  (
( B  -  A
)  =  ( B  -  A )  <->  ( A  +  ( B  -  A ) )  =  B ) )
72, 3, 5, 6syl3anc 1182 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B  -  A )  =  ( B  -  A )  <-> 
( A  +  ( B  -  A ) )  =  B ) )
81, 7mpbii 202 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735    + caddc 8740    - cmin 9037
This theorem is referenced by:  npcan  9060  nncan  9076  npncan3  9085  negid  9094  pncan3i  9123  pncan3d  9160  subdi  9213  posdif  9267  quoremnn0ALT  10961  fzen2  11031  bernneq2  11228  hashdom  11361  hashfz  11381  isercoll2  12142  isumshft  12298  dvdssubr  12570  vdwlem3  13030  vdwlem9  13036  mplsubrglem  16183  blcvx  18304  dvef  19327  dvcvx  19367  sincosq2sgn  19867  sincosq3sgn  19868  sincosq4sgn  19869  eflogeq  19955  logdivlti  19971  advlogexp  20002  cvxcl  20279  scvxcvx  20280  cvxscon  23774  rescon  23777  jm2.26a  27093  jm2.27c  27100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039
  Copyright terms: Public domain W3C validator