MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnfnei Unicode version

Theorem pnfnei 16966
Description: A neighborhood of  +oo contains an unbounded interval based at a real number. Together with xrtgioo 18328 (which describes neighborhoods of  RR) and mnfnei 16967, this gives all "negative" topological information ensuring that it is not too fine (and of course iooordt 16963 and similar ensure that it has all the sets we want). (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pnfnei  |-  ( ( A  e.  (ordTop `  <_  )  /\  +oo  e.  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
)
Distinct variable group:    x, A

Proof of Theorem pnfnei
Dummy variables  a 
b  c  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  =  ran  ( y  e. 
RR*  |->  ( y (,] 
+oo ) )
2 eqid 2296 . . . 4  |-  ran  (
y  e.  RR*  |->  (  -oo [,) y ) )  =  ran  ( y  e. 
RR*  |->  (  -oo [,) y ) )
3 eqid 2296 . . . 4  |-  ran  (,)  =  ran  (,)
41, 2, 3leordtval 16959 . . 3  |-  (ordTop `  <_  )  =  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
)
54eleq2i 2360 . 2  |-  ( A  e.  (ordTop `  <_  )  <-> 
A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
) )
6 tg2 16719 . . 3  |-  ( ( A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
)  /\  +oo  e.  A
)  ->  E. u  e.  ( ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
(  +oo  e.  u  /\  u  C_  A ) )
7 elun 3329 . . . . 5  |-  ( u  e.  ( ( ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  u.  ran  ( y  e.  RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )  <->  ( u  e.  ( ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  \/  u  e.  ran  (,) ) )
8 elun 3329 . . . . . . 7  |-  ( u  e.  ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  <-> 
( u  e.  ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  \/  u  e.  ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) ) )
9 vex 2804 . . . . . . . . . 10  |-  u  e. 
_V
10 eqid 2296 . . . . . . . . . . 11  |-  ( y  e.  RR*  |->  ( y (,]  +oo ) )  =  ( y  e.  RR*  |->  ( y (,]  +oo ) )
1110elrnmpt 4942 . . . . . . . . . 10  |-  ( u  e.  _V  ->  (
u  e.  ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  <->  E. y  e.  RR*  u  =  ( y (,]  +oo )
) )
129, 11ax-mp 8 . . . . . . . . 9  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  <->  E. y  e.  RR*  u  =  ( y (,]  +oo )
)
13 mnfxr 10472 . . . . . . . . . . . . . . 15  |-  -oo  e.  RR*
1413a1i 10 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  -oo  e.  RR* )
15 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
y  e.  RR* )
16 0xr 8894 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
17 ifcl 3614 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  0  e.  RR* )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR* )
1815, 16, 17sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR* )
19 pnfxr 10471 . . . . . . . . . . . . . . 15  |-  +oo  e.  RR*
2019a1i 10 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  +oo  e.  RR* )
21 xrmax1 10520 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  y  e.  RR* )  ->  0  <_  if ( 0  <_ 
y ,  y ,  0 ) )
2216, 15, 21sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
0  <_  if (
0  <_  y , 
y ,  0 ) )
23 ge0gtmnf 10517 . . . . . . . . . . . . . . 15  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR*  /\  0  <_  if (
0  <_  y , 
y ,  0 ) )  ->  -oo  <  if ( 0  <_  y ,  y ,  0 ) )
2418, 22, 23syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  -oo  <  if ( 0  <_  y ,  y ,  0 ) )
25 simpll 730 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  +oo  e.  u )
26 simprr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  u  =  ( y (,]  +oo ) )
2725, 26eleqtrd 2372 . . . . . . . . . . . . . . . . 17  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  +oo  e.  ( y (,] 
+oo ) )
28 elioc1 10714 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  RR*  /\  +oo  e.  RR* )  ->  (  +oo  e.  ( y (,] 
+oo )  <->  (  +oo  e.  RR*  /\  y  <  +oo  /\  +oo  <_  +oo )
) )
2915, 19, 28sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
(  +oo  e.  (
y (,]  +oo )  <->  (  +oo  e.  RR*  /\  y  <  +oo  /\  +oo  <_  +oo )
) )
3027, 29mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
(  +oo  e.  RR*  /\  y  <  +oo  /\  +oo  <_  +oo ) )
3130simp2d 968 . . . . . . . . . . . . . . 15  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
y  <  +oo )
32 0re 8854 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
33 ltpnf 10479 . . . . . . . . . . . . . . . 16  |-  ( 0  e.  RR  ->  0  <  +oo )
3432, 33ax-mp 8 . . . . . . . . . . . . . . 15  |-  0  <  +oo
35 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( y  =  if ( 0  <_  y ,  y ,  0 )  -> 
( y  <  +oo  <->  if ( 0  <_  y ,  y ,  0 )  <  +oo )
)
36 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( 0  =  if ( 0  <_  y ,  y ,  0 )  -> 
( 0  <  +oo  <->  if ( 0  <_  y ,  y ,  0 )  <  +oo )
)
3735, 36ifboth 3609 . . . . . . . . . . . . . . 15  |-  ( ( y  <  +oo  /\  0  <  +oo )  ->  if ( 0  <_  y ,  y ,  0 )  <  +oo )
3831, 34, 37sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  <  +oo )
39 xrre2 10515 . . . . . . . . . . . . . 14  |-  ( ( (  -oo  e.  RR*  /\  if ( 0  <_ 
y ,  y ,  0 )  e.  RR*  /\ 
+oo  e.  RR* )  /\  (  -oo  <  if (
0  <_  y , 
y ,  0 )  /\  if ( 0  <_  y ,  y ,  0 )  <  +oo ) )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR )
4014, 18, 20, 24, 38, 39syl32anc 1190 . . . . . . . . . . . . 13  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  if ( 0  <_  y ,  y ,  0 )  e.  RR )
41 xrmax2 10521 . . . . . . . . . . . . . . . 16  |-  ( ( 0  e.  RR*  /\  y  e.  RR* )  ->  y  <_  if ( 0  <_ 
y ,  y ,  0 ) )
4216, 15, 41sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
y  <_  if (
0  <_  y , 
y ,  0 ) )
43 df-ioc 10677 . . . . . . . . . . . . . . . 16  |-  (,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { c  e.  RR*  |  (
a  <  c  /\  c  <_  b ) } )
44 xrlelttr 10503 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR*  /\  if ( 0  <_  y ,  y ,  0 )  e.  RR*  /\  x  e.  RR* )  ->  (
( y  <_  if ( 0  <_  y ,  y ,  0 )  /\  if ( 0  <_  y , 
y ,  0 )  <  x )  -> 
y  <  x )
)
4543, 43, 44ixxss1 10690 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR*  /\  y  <_  if ( 0  <_ 
y ,  y ,  0 ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] 
+oo )  C_  (
y (,]  +oo ) )
4615, 42, 45syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] 
+oo )  C_  (
y (,]  +oo ) )
47 simplr 731 . . . . . . . . . . . . . . 15  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  u  C_  A )
4826, 47eqsstr3d 3226 . . . . . . . . . . . . . 14  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
( y (,]  +oo )  C_  A )
4946, 48sstrd 3202 . . . . . . . . . . . . 13  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  -> 
( if ( 0  <_  y ,  y ,  0 ) (,] 
+oo )  C_  A
)
50 oveq1 5881 . . . . . . . . . . . . . . 15  |-  ( x  =  if ( 0  <_  y ,  y ,  0 )  -> 
( x (,]  +oo )  =  ( if ( 0  <_  y ,  y ,  0 ) (,]  +oo )
)
5150sseq1d 3218 . . . . . . . . . . . . . 14  |-  ( x  =  if ( 0  <_  y ,  y ,  0 )  -> 
( ( x (,] 
+oo )  C_  A  <->  ( if ( 0  <_ 
y ,  y ,  0 ) (,]  +oo )  C_  A ) )
5251rspcev 2897 . . . . . . . . . . . . 13  |-  ( ( if ( 0  <_ 
y ,  y ,  0 )  e.  RR  /\  ( if ( 0  <_  y ,  y ,  0 ) (,] 
+oo )  C_  A
)  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
)
5340, 49, 52syl2anc 642 . . . . . . . . . . . 12  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  ( y  e. 
RR*  /\  u  =  ( y (,]  +oo ) ) )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A )
5453expr 598 . . . . . . . . . . 11  |-  ( ( (  +oo  e.  u  /\  u  C_  A )  /\  y  e.  RR* )  ->  ( u  =  ( y (,]  +oo )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A ) )
5554rexlimdva 2680 . . . . . . . . . 10  |-  ( ( 
+oo  e.  u  /\  u  C_  A )  -> 
( E. y  e. 
RR*  u  =  ( y (,]  +oo )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A ) )
5655com12 27 . . . . . . . . 9  |-  ( E. y  e.  RR*  u  =  ( y (,] 
+oo )  ->  (
(  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A ) )
5712, 56sylbi 187 . . . . . . . 8  |-  ( u  e.  ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  -> 
( (  +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
58 eqid 2296 . . . . . . . . . . 11  |-  ( y  e.  RR*  |->  (  -oo [,) y ) )  =  ( y  e.  RR*  |->  (  -oo [,) y ) )
5958elrnmpt 4942 . . . . . . . . . 10  |-  ( u  e.  _V  ->  (
u  e.  ran  (
y  e.  RR*  |->  (  -oo [,) y ) )  <->  E. y  e.  RR*  u  =  ( 
-oo [,) y ) ) )
609, 59ax-mp 8 . . . . . . . . 9  |-  ( u  e.  ran  ( y  e.  RR*  |->  (  -oo [,) y ) )  <->  E. y  e.  RR*  u  =  ( 
-oo [,) y ) )
61 pnfnlt 10483 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  -.  +oo  <  y )
62 elico1 10715 . . . . . . . . . . . . . . . 16  |-  ( ( 
-oo  e.  RR*  /\  y  e.  RR* )  ->  (  +oo  e.  (  -oo [,) y )  <->  (  +oo  e.  RR*  /\  -oo  <_  +oo 
/\  +oo  <  y ) ) )
6313, 62mpan 651 . . . . . . . . . . . . . . 15  |-  ( y  e.  RR*  ->  (  +oo  e.  (  -oo [,) y
)  <->  (  +oo  e.  RR* 
/\  -oo  <_  +oo  /\  +oo 
<  y ) ) )
64 simp3 957 . . . . . . . . . . . . . . 15  |-  ( ( 
+oo  e.  RR*  /\  -oo  <_  +oo  /\  +oo  <  y )  ->  +oo  <  y
)
6563, 64syl6bi 219 . . . . . . . . . . . . . 14  |-  ( y  e.  RR*  ->  (  +oo  e.  (  -oo [,) y
)  ->  +oo  <  y
) )
6661, 65mtod 168 . . . . . . . . . . . . 13  |-  ( y  e.  RR*  ->  -.  +oo  e.  (  -oo [,) y
) )
67 eleq2 2357 . . . . . . . . . . . . . 14  |-  ( u  =  (  -oo [,) y )  ->  (  +oo  e.  u  <->  +oo  e.  ( 
-oo [,) y ) ) )
6867notbid 285 . . . . . . . . . . . . 13  |-  ( u  =  (  -oo [,) y )  ->  ( -.  +oo  e.  u  <->  -.  +oo  e.  (  -oo [,) y ) ) )
6966, 68syl5ibrcom 213 . . . . . . . . . . . 12  |-  ( y  e.  RR*  ->  ( u  =  (  -oo [,) y )  ->  -.  +oo 
e.  u ) )
7069rexlimiv 2674 . . . . . . . . . . 11  |-  ( E. y  e.  RR*  u  =  (  -oo [,) y
)  ->  -.  +oo  e.  u )
7170pm2.21d 98 . . . . . . . . . 10  |-  ( E. y  e.  RR*  u  =  (  -oo [,) y
)  ->  (  +oo  e.  u  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
7271adantrd 454 . . . . . . . . 9  |-  ( E. y  e.  RR*  u  =  (  -oo [,) y
)  ->  ( (  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
7360, 72sylbi 187 . . . . . . . 8  |-  ( u  e.  ran  ( y  e.  RR*  |->  (  -oo [,) y ) )  -> 
( (  +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
7457, 73jaoi 368 . . . . . . 7  |-  ( ( u  e.  ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  \/  u  e.  ran  (
y  e.  RR*  |->  (  -oo [,) y ) ) )  ->  ( (  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
758, 74sylbi 187 . . . . . 6  |-  ( u  e.  ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  ->  ( (  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
76 pnfnre 8890 . . . . . . . . . 10  |-  +oo  e/  RR
77 df-nel 2462 . . . . . . . . . 10  |-  (  +oo  e/  RR  <->  -.  +oo  e.  RR )
7876, 77mpbi 199 . . . . . . . . 9  |-  -.  +oo  e.  RR
79 elssuni 3871 . . . . . . . . . . 11  |-  ( u  e.  ran  (,)  ->  u 
C_  U. ran  (,) )
80 unirnioo 10759 . . . . . . . . . . 11  |-  RR  =  U. ran  (,)
8179, 80syl6sseqr 3238 . . . . . . . . . 10  |-  ( u  e.  ran  (,)  ->  u 
C_  RR )
8281sseld 3192 . . . . . . . . 9  |-  ( u  e.  ran  (,)  ->  ( 
+oo  e.  u  ->  +oo 
e.  RR ) )
8378, 82mtoi 169 . . . . . . . 8  |-  ( u  e.  ran  (,)  ->  -. 
+oo  e.  u )
8483pm2.21d 98 . . . . . . 7  |-  ( u  e.  ran  (,)  ->  ( 
+oo  e.  u  ->  E. x  e.  RR  (
x (,]  +oo )  C_  A ) )
8584adantrd 454 . . . . . 6  |-  ( u  e.  ran  (,)  ->  ( (  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A ) )
8675, 85jaoi 368 . . . . 5  |-  ( ( u  e.  ( ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  u.  ran  ( y  e.  RR*  |->  (  -oo [,) y ) ) )  \/  u  e.  ran  (,) )  -> 
( (  +oo  e.  u  /\  u  C_  A
)  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
877, 86sylbi 187 . . . 4  |-  ( u  e.  ( ( ran  ( y  e.  RR*  |->  ( y (,]  +oo ) )  u.  ran  ( y  e.  RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )  ->  ( (  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
) )
8887rexlimiv 2674 . . 3  |-  ( E. u  e.  ( ( ran  ( y  e. 
RR*  |->  ( y (,] 
+oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
(  +oo  e.  u  /\  u  C_  A )  ->  E. x  e.  RR  ( x (,]  +oo )  C_  A )
896, 88syl 15 . 2  |-  ( ( A  e.  ( topGen `  ( ( ran  (
y  e.  RR*  |->  ( y (,]  +oo ) )  u. 
ran  ( y  e. 
RR*  |->  (  -oo [,) y ) ) )  u.  ran  (,) )
)  /\  +oo  e.  A
)  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
)
905, 89sylanb 458 1  |-  ( ( A  e.  (ordTop `  <_  )  /\  +oo  e.  A )  ->  E. x  e.  RR  ( x (,] 
+oo )  C_  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    e/ wnel 2460   E.wrex 2557   _Vcvv 2801    u. cun 3163    C_ wss 3165   ifcif 3578   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753    +oocpnf 8880    -oocmnf 8881   RR*cxr 8882    < clt 8883    <_ cle 8884   (,)cioo 10672   (,]cioc 10673   [,)cico 10674   topGenctg 13358  ordTopcordt 13414
This theorem is referenced by:  xrge0tsms  18355  xrlimcnp  20279  pnfneige0  23389  xrge0tsmsd  23397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-topgen 13360  df-ordt 13418  df-ps 14322  df-tsr 14323  df-top 16652  df-bases 16654
  Copyright terms: Public domain W3C validator