MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnt Structured version   Unicode version

Theorem pnt 21308
Description: The Prime Number Theorem: the number of prime numbers less than  x tends asymptotically to  x  /  log (
x ) as  x goes to infinity. (Contributed by Mario Carneiro, 1-Jun-2016.)
Assertion
Ref Expression
pnt  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1

Proof of Theorem pnt
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 9090 . . . . . . 7  |-  1  e.  RR
21rexri 9137 . . . . . 6  |-  1  e.  RR*
3 1lt2 10142 . . . . . 6  |-  1  <  2
4 df-ioo 10920 . . . . . . 7  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
5 df-ico 10922 . . . . . . 7  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
6 xrltletr 10747 . . . . . . 7  |-  ( ( 1  e.  RR*  /\  2  e.  RR*  /\  w  e. 
RR* )  ->  (
( 1  <  2  /\  2  <_  w )  ->  1  <  w
) )
74, 5, 6ixxss1 10934 . . . . . 6  |-  ( ( 1  e.  RR*  /\  1  <  2 )  ->  (
2 [,)  +oo )  C_  ( 1 (,)  +oo ) )
82, 3, 7mp2an 654 . . . . 5  |-  ( 2 [,)  +oo )  C_  (
1 (,)  +oo )
9 resmpt 5191 . . . . 5  |-  ( ( 2 [,)  +oo )  C_  ( 1 (,)  +oo )  ->  ( ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) )
108, 9mp1i 12 . . . 4  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) ) )
118sseli 3344 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  ( 1 (,)  +oo ) )
12 ioossre 10972 . . . . . . . . . . 11  |-  ( 1 (,)  +oo )  C_  RR
1312sseli 3344 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
1411, 13syl 16 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR )
15 2re 10069 . . . . . . . . . . 11  |-  2  e.  RR
16 pnfxr 10713 . . . . . . . . . . 11  |-  +oo  e.  RR*
17 elico2 10974 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  +oo 
e.  RR* )  ->  (
x  e.  ( 2 [,)  +oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) ) )
1815, 16, 17mp2an 654 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  <->  ( x  e.  RR  /\  2  <_  x  /\  x  <  +oo ) )
1918simp2bi 973 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  2  <_  x )
20 chtrpcl 20958 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
( theta `  x )  e.  RR+ )
2114, 19, 20syl2anc 643 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  RR+ )
22 0re 9091 . . . . . . . . . . . 12  |-  0  e.  RR
2322a1i 11 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  e.  RR )
241a1i 11 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  e.  RR )
25 0lt1 9550 . . . . . . . . . . . 12  |-  0  <  1
2625a1i 11 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  1 )
27 eliooord 10970 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
2827simpld 446 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  1  <  x )
2923, 24, 13, 26, 28lttrd 9231 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  0  <  x )
3013, 29elrpd 10646 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR+ )
3111, 30syl 16 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  RR+ )
3221, 31rpdivcld 10665 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  x )  e.  RR+ )
3332adantl 453 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  x )  e.  RR+ )
34 ppinncl 20957 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  2  <_  x )  -> 
(π `  x )  e.  NN )
3514, 19, 34syl2anc 643 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  NN )
3635nnrpd 10647 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  RR+ )
3713, 28rplogcld 20524 . . . . . . . . . 10  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( log `  x )  e.  RR+ )
3811, 37syl 16 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  RR+ )
3936, 38rpmulcld 10664 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  RR+ )
4021, 39rpdivcld 10665 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4140adantl 453 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  e.  RR+ )
4231ssriv 3352 . . . . . . . 8  |-  ( 2 [,)  +oo )  C_  RR+
43 resmpt 5191 . . . . . . . 8  |-  ( ( 2 [,)  +oo )  C_  RR+  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) ) )
4442, 43ax-mp 8 . . . . . . 7  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (
theta `  x )  /  x ) )
45 pnt2 21307 . . . . . . . 8  |-  ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1
46 rlimres 12352 . . . . . . . 8  |-  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  ~~> r  1  ->  ( ( x  e.  RR+  |->  ( (
theta `  x )  /  x ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
4745, 46mp1i 12 . . . . . . 7  |-  (  T. 
->  ( ( x  e.  RR+  |->  ( ( theta `  x )  /  x
) )  |`  (
2 [,)  +oo ) )  ~~> r  1 )
4844, 47syl5eqbrr 4246 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  x ) )  ~~> r  1 )
49 chtppilim 21169 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) )  ~~> r  1
5049a1i 11 . . . . . 6  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( theta `  x
)  /  ( (π `  x )  x.  ( log `  x ) ) ) )  ~~> r  1 )
51 ax-1ne0 9059 . . . . . . 7  |-  1  =/=  0
5251a1i 11 . . . . . 6  |-  (  T. 
->  1  =/=  0
)
5340rpne0d 10653 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5453adantl 453 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 2 [,)  +oo ) )  ->  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) )  =/=  0 )
5533, 41, 48, 50, 52, 54rlimdiv 12439 . . . . 5  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( ( ( theta `  x )  /  x
)  /  ( (
theta `  x )  / 
( (π `  x )  x.  ( log `  x
) ) ) ) )  ~~> r  ( 1  /  1 ) )
5614recnd 9114 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  e.  CC )
57 chtcl 20892 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( theta `  x )  e.  RR )
5813, 57syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  RR )
5958recnd 9114 . . . . . . . . . . 11  |-  ( x  e.  ( 1 (,) 
+oo )  ->  ( theta `  x )  e.  CC )
6011, 59syl 16 . . . . . . . . . 10  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  e.  CC )
6156, 60mulcomd 9109 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
x  x.  ( theta `  x ) )  =  ( ( theta `  x
)  x.  x ) )
6261oveq2d 6097 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( ( theta `  x )  x.  (
(π `  x )  x.  ( log `  x
) ) )  / 
( ( theta `  x
)  x.  x ) ) )
6339rpcnd 10650 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  e.  CC )
6431rpne0d 10653 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  x  =/=  0 )
6521rpne0d 10653 . . . . . . . . 9  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( theta `  x )  =/=  0 )
6663, 56, 60, 64, 65divcan5d 9816 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( (
theta `  x )  x.  x ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6762, 66eqtrd 2468 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  x.  ( (π `  x )  x.  ( log `  x ) ) )  /  ( x  x.  ( theta `  x
) ) )  =  ( ( (π `  x
)  x.  ( log `  x ) )  /  x ) )
6839rpne0d 10653 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  x.  ( log `  x
) )  =/=  0
)
6960, 56, 60, 63, 64, 68, 65divdivdivd 9837 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( ( (
theta `  x )  x.  ( (π `  x )  x.  ( log `  x
) ) )  / 
( x  x.  ( theta `  x ) ) ) )
7035nncnd 10016 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (π `  x )  e.  CC )
7138rpcnd 10650 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  e.  CC )
7238rpne0d 10653 . . . . . . . 8  |-  ( x  e.  ( 2 [,) 
+oo )  ->  ( log `  x )  =/=  0 )
7370, 56, 71, 64, 72divdiv2d 9822 . . . . . . 7  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  =  ( ( (π `  x )  x.  ( log `  x
) )  /  x
) )
7467, 69, 733eqtr4d 2478 . . . . . 6  |-  ( x  e.  ( 2 [,) 
+oo )  ->  (
( ( theta `  x
)  /  x )  /  ( ( theta `  x )  /  (
(π `  x )  x.  ( log `  x
) ) ) )  =  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )
7574mpteq2ia 4291 . . . . 5  |-  ( x  e.  ( 2 [,) 
+oo )  |->  ( ( ( theta `  x )  /  x )  /  (
( theta `  x )  /  ( (π `  x
)  x.  ( log `  x ) ) ) ) )  =  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
76 ax-1cn 9048 . . . . . 6  |-  1  e.  CC
7776div1i 9742 . . . . 5  |-  ( 1  /  1 )  =  1
7855, 75, 773brtr3g 4243 . . . 4  |-  (  T. 
->  ( x  e.  ( 2 [,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
7910, 78eqbrtrd 4232 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 )
80 ppicl 20914 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (π `  x )  e.  NN0 )
8113, 80syl 16 . . . . . . . . 9  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  NN0 )
8281nn0red 10275 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (π `  x )  e.  RR )
8330, 37rpdivcld 10665 . . . . . . . 8  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
x  /  ( log `  x ) )  e.  RR+ )
8482, 83rerpdivcld 10675 . . . . . . 7  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  RR )
8584recnd 9114 . . . . . 6  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
8685adantl 453 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
(π `  x )  / 
( x  /  ( log `  x ) ) )  e.  CC )
87 eqid 2436 . . . . 5  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  =  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )
8886, 87fmptd 5893 . . . 4  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) ) : ( 1 (,)  +oo ) --> CC )
8912a1i 11 . . . 4  |-  (  T. 
->  ( 1 (,)  +oo )  C_  RR )
9015a1i 11 . . . 4  |-  (  T. 
->  2  e.  RR )
9188, 89, 90rlimresb 12359 . . 3  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x
)  /  ( x  /  ( log `  x
) ) ) )  ~~> r  1  <->  ( (
x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  |`  ( 2 [,)  +oo ) )  ~~> r  1 ) )
9279, 91mpbird 224 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( (π `  x )  / 
( x  /  ( log `  x ) ) ) )  ~~> r  1 )
9392trud 1332 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( (π `  x )  /  (
x  /  ( log `  x ) ) ) )  ~~> r  1
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ w3a 936    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2599    C_ wss 3320   class class class wbr 4212    e. cmpt 4266    |` cres 4880   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    x. cmul 8995    +oocpnf 9117   RR*cxr 9119    < clt 9120    <_ cle 9121    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   RR+crp 10612   (,)cioo 10916   [,)cico 10918    ~~> r crli 12279   logclog 20452   thetaccht 20873  πcppi 20876
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-disj 4183  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-o1 12284  df-lo1 12285  df-sum 12480  df-ef 12670  df-e 12671  df-sin 12672  df-cos 12673  df-pi 12675  df-dvds 12853  df-gcd 13007  df-prm 13080  df-pc 13211  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-cmp 17450  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455  df-em 20831  df-cht 20879  df-vma 20880  df-chp 20881  df-ppi 20882  df-mu 20883
  Copyright terms: Public domain W3C validator