Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlema Structured version   Unicode version

Theorem pntlema 21295
 Description: Lemma for pnt 21313. Closure for the constants used in the proof. The mammoth expression is a number large enough to satisfy all the lower bounds needed for . For comparison with Equation 10.6.27 of [Shapiro], p. 434, is x2, is x1, is the big-O constant in Equation 10.6.29 of [Shapiro], p. 435, and is the unnamed lower bound of "for sufficiently large x" in Equation 10.6.34 of [Shapiro], p. 436. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r ψ
pntlem1.a
pntlem1.b
pntlem1.l
pntlem1.d
pntlem1.f ;
pntlem1.u
pntlem1.u2
pntlem1.e
pntlem1.k
pntlem1.y
pntlem1.x
pntlem1.c
pntlem1.w ;
Assertion
Ref Expression
pntlema
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()

Proof of Theorem pntlema
StepHypRef Expression
1 pntlem1.w . 2 ;
2 pntlem1.y . . . . . 6
32simpld 447 . . . . 5
4 4nn 10140 . . . . . . 7
5 nnrp 10626 . . . . . . 7
64, 5ax-mp 5 . . . . . 6
7 pntlem1.r . . . . . . . . 9 ψ
8 pntlem1.a . . . . . . . . 9
9 pntlem1.b . . . . . . . . 9
10 pntlem1.l . . . . . . . . 9
11 pntlem1.d . . . . . . . . 9
12 pntlem1.f . . . . . . . . 9 ;
137, 8, 9, 10, 11, 12pntlemd 21293 . . . . . . . 8
1413simp1d 970 . . . . . . 7
15 pntlem1.u . . . . . . . . 9
16 pntlem1.u2 . . . . . . . . 9
17 pntlem1.e . . . . . . . . 9
18 pntlem1.k . . . . . . . . 9
197, 8, 9, 10, 11, 12, 15, 16, 17, 18pntlemc 21294 . . . . . . . 8
2019simp1d 970 . . . . . . 7
2114, 20rpmulcld 10669 . . . . . 6
22 rpdivcl 10639 . . . . . 6
236, 21, 22sylancr 646 . . . . 5
243, 23rpaddcld 10668 . . . 4
25 2z 10317 . . . 4
26 rpexpcl 11405 . . . 4
2724, 25, 26sylancl 645 . . 3
28 pntlem1.x . . . . . . 7
2928simpld 447 . . . . . 6
3019simp2d 971 . . . . . . 7
31 rpexpcl 11405 . . . . . . 7
3230, 25, 31sylancl 645 . . . . . 6
3329, 32rpmulcld 10669 . . . . 5
344nnzi 10310 . . . . 5
35 rpexpcl 11405 . . . . 5
3633, 34, 35sylancl 645 . . . 4
37 3nn0 10244 . . . . . . . . . . 11
38 2nn 10138 . . . . . . . . . . 11
3937, 38decnncl 10400 . . . . . . . . . 10 ;
40 nnrp 10626 . . . . . . . . . 10 ; ;
4139, 40ax-mp 5 . . . . . . . . 9 ;
42 rpmulcl 10638 . . . . . . . . 9 ; ;
4341, 9, 42sylancr 646 . . . . . . . 8 ;
4419simp3d 972 . . . . . . . . . 10
4544simp3d 972 . . . . . . . . 9
46 rpexpcl 11405 . . . . . . . . . . 11
4720, 25, 46sylancl 645 . . . . . . . . . 10
4814, 47rpmulcld 10669 . . . . . . . . 9
4945, 48rpmulcld 10669 . . . . . . . 8
5043, 49rpdivcld 10670 . . . . . . 7 ;
51 3nn 10139 . . . . . . . . . 10
52 nnrp 10626 . . . . . . . . . 10
5351, 52ax-mp 5 . . . . . . . . 9
54 rpmulcl 10638 . . . . . . . . 9
5515, 53, 54sylancl 645 . . . . . . . 8
56 pntlem1.c . . . . . . . 8
5755, 56rpaddcld 10668 . . . . . . 7
5850, 57rpmulcld 10669 . . . . . 6 ;
5958rpred 10653 . . . . 5 ;
6059rpefcld 12711 . . . 4 ;
6136, 60rpaddcld 10668 . . 3 ;
6227, 61rpaddcld 10668 . 2 ;
631, 62syl5eqel 2522 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1726   class class class wbr 4215   cmpt 4269  cfv 5457  (class class class)co 6084  cc0 8995  c1 8996   caddc 8998   cmul 9000   clt 9125   cle 9126   cmin 9296   cdiv 9682  cn 10005  c2 10054  c3 10055  c4 10056  cz 10287  ;cdc 10387  crp 10617  cioo 10921  cexp 11387  ce 12669  ψcchp 20880 This theorem is referenced by:  pntlemb  21296  pntleme  21307 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-rp 10618  df-ioo 10925  df-ico 10927  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675
 Copyright terms: Public domain W3C validator