MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemd Unicode version

Theorem pntlemd 20759
Description: Lemma for pnt 20779. Closure for the constants used in the proof. For comparison with Equation 10.6.27 of [Shapiro], p. 434,  A is C^*,  B is c1,  L is λ,  D is c2, and  F is c3. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
Assertion
Ref Expression
pntlemd  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )

Proof of Theorem pntlemd
StepHypRef Expression
1 ioossre 10728 . . . 4  |-  ( 0 (,) 1 )  C_  RR
2 pntlem1.l . . . 4  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
31, 2sseldi 3191 . . 3  |-  ( ph  ->  L  e.  RR )
4 eliooord 10726 . . . . 5  |-  ( L  e.  ( 0 (,) 1 )  ->  (
0  <  L  /\  L  <  1 ) )
52, 4syl 15 . . . 4  |-  ( ph  ->  ( 0  <  L  /\  L  <  1
) )
65simpld 445 . . 3  |-  ( ph  ->  0  <  L )
73, 6elrpd 10404 . 2  |-  ( ph  ->  L  e.  RR+ )
8 pntlem1.d . . 3  |-  D  =  ( A  +  1 )
9 pntlem1.a . . . 4  |-  ( ph  ->  A  e.  RR+ )
10 1rp 10374 . . . 4  |-  1  e.  RR+
11 rpaddcl 10390 . . . 4  |-  ( ( A  e.  RR+  /\  1  e.  RR+ )  ->  ( A  +  1 )  e.  RR+ )
129, 10, 11sylancl 643 . . 3  |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
138, 12syl5eqel 2380 . 2  |-  ( ph  ->  D  e.  RR+ )
14 pntlem1.f . . 3  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
15 1re 8853 . . . . . . . 8  |-  1  e.  RR
16 ltaddrp 10402 . . . . . . . 8  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
1715, 9, 16sylancr 644 . . . . . . 7  |-  ( ph  ->  1  <  ( 1  +  A ) )
189rpcnd 10408 . . . . . . . . 9  |-  ( ph  ->  A  e.  CC )
19 ax-1cn 8811 . . . . . . . . 9  |-  1  e.  CC
20 addcom 9014 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( A  +  1 )  =  ( 1  +  A ) )
2118, 19, 20sylancl 643 . . . . . . . 8  |-  ( ph  ->  ( A  +  1 )  =  ( 1  +  A ) )
228, 21syl5eq 2340 . . . . . . 7  |-  ( ph  ->  D  =  ( 1  +  A ) )
2317, 22breqtrrd 4065 . . . . . 6  |-  ( ph  ->  1  <  D )
2413recgt1d 10420 . . . . . 6  |-  ( ph  ->  ( 1  <  D  <->  ( 1  /  D )  <  1 ) )
2523, 24mpbid 201 . . . . 5  |-  ( ph  ->  ( 1  /  D
)  <  1 )
2613rprecred 10417 . . . . . 6  |-  ( ph  ->  ( 1  /  D
)  e.  RR )
27 difrp 10403 . . . . . 6  |-  ( ( ( 1  /  D
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2826, 15, 27sylancl 643 . . . . 5  |-  ( ph  ->  ( ( 1  /  D )  <  1  <->  ( 1  -  ( 1  /  D ) )  e.  RR+ ) )
2925, 28mpbid 201 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  D ) )  e.  RR+ )
30 3nn0 9999 . . . . . . . . 9  |-  3  e.  NN0
31 2nn 9893 . . . . . . . . 9  |-  2  e.  NN
3230, 31decnncl 10153 . . . . . . . 8  |- ; 3 2  e.  NN
33 nnrp 10379 . . . . . . . 8  |-  (; 3 2  e.  NN  -> ; 3
2  e.  RR+ )
3432, 33ax-mp 8 . . . . . . 7  |- ; 3 2  e.  RR+
35 pntlem1.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
36 rpmulcl 10391 . . . . . . 7  |-  ( (; 3
2  e.  RR+  /\  B  e.  RR+ )  ->  (; 3 2  x.  B )  e.  RR+ )
3734, 35, 36sylancr 644 . . . . . 6  |-  ( ph  ->  (; 3 2  x.  B
)  e.  RR+ )
387, 37rpdivcld 10423 . . . . 5  |-  ( ph  ->  ( L  /  (; 3 2  x.  B ) )  e.  RR+ )
39 2z 10070 . . . . . 6  |-  2  e.  ZZ
40 rpexpcl 11138 . . . . . 6  |-  ( ( D  e.  RR+  /\  2  e.  ZZ )  ->  ( D ^ 2 )  e.  RR+ )
4113, 39, 40sylancl 643 . . . . 5  |-  ( ph  ->  ( D ^ 2 )  e.  RR+ )
4238, 41rpdivcld 10423 . . . 4  |-  ( ph  ->  ( ( L  / 
(; 3 2  x.  B
) )  /  ( D ^ 2 ) )  e.  RR+ )
4329, 42rpmulcld 10422 . . 3  |-  ( ph  ->  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )  e.  RR+ )
4414, 43syl5eqel 2380 . 2  |-  ( ph  ->  F  e.  RR+ )
457, 13, 443jca 1132 1  |-  ( ph  ->  ( L  e.  RR+  /\  D  e.  RR+  /\  F  e.  RR+ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   ZZcz 10040  ;cdc 10140   RR+crp 10370   (,)cioo 10672   ^cexp 11120  ψcchp 20346
This theorem is referenced by:  pntlemc  20760  pntlema  20761  pntlemb  20762  pntlemq  20766  pntlemr  20767  pntlemj  20768  pntlemf  20770  pntlemo  20772  pntleml  20776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-ioo 10676  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator