MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemh Unicode version

Theorem pntlemh 20764
Description: Lemma for pnt 20779. Bounds on the subintervals in the induction. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
Assertion
Ref Expression
pntlemh  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Distinct variable group:    E, a
Allowed substitution hints:    ph( a)    A( a)    B( a)    C( a)    D( a)    R( a)    U( a)    F( a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemh
StepHypRef Expression
1 pntlem1.x . . . . . . . . . 10  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
21simpld 445 . . . . . . . . 9  |-  ( ph  ->  X  e.  RR+ )
32adantr 451 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  e.  RR+ )
43relogcld 19990 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  e.  RR )
5 pntlem1.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
6 pntlem1.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
7 pntlem1.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR+ )
8 pntlem1.l . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
9 pntlem1.d . . . . . . . . . . . 12  |-  D  =  ( A  +  1 )
10 pntlem1.f . . . . . . . . . . . 12  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
11 pntlem1.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  RR+ )
12 pntlem1.u2 . . . . . . . . . . . 12  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . . 12  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . . 12  |-  K  =  ( exp `  ( B  /  E ) )
155, 6, 7, 8, 9, 10, 11, 12, 13, 14pntlemc 20760 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1615simp2d 968 . . . . . . . . . 10  |-  ( ph  ->  K  e.  RR+ )
1716rpred 10406 . . . . . . . . 9  |-  ( ph  ->  K  e.  RR )
1815simp3d 969 . . . . . . . . . 10  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1918simp2d 968 . . . . . . . . 9  |-  ( ph  ->  1  <  K )
2017, 19rplogcld 19996 . . . . . . . 8  |-  ( ph  ->  ( log `  K
)  e.  RR+ )
2120adantr 451 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR+ )
224, 21rerpdivcld 10433 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  e.  RR )
23 pntlem1.y . . . . . . . . . 10  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
24 pntlem1.c . . . . . . . . . 10  |-  ( ph  ->  C  e.  RR+ )
25 pntlem1.w . . . . . . . . . 10  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
26 pntlem1.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
27 pntlem1.m . . . . . . . . . 10  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
28 pntlem1.n . . . . . . . . . 10  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
295, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26, 27, 28pntlemg 20763 . . . . . . . . 9  |-  ( ph  ->  ( M  e.  NN  /\  N  e.  ( ZZ>= `  M )  /\  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  <_  ( N  -  M )
) )
3029simp1d 967 . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
3130adantr 451 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  NN )
3231nnred 9777 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  e.  RR )
33 elfzuz 10810 . . . . . . . 8  |-  ( J  e.  ( M ... N )  ->  J  e.  ( ZZ>= `  M )
)
34 nnuz 10279 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
3534uztrn2 10261 . . . . . . . 8  |-  ( ( M  e.  NN  /\  J  e.  ( ZZ>= `  M ) )  ->  J  e.  NN )
3630, 33, 35syl2an 463 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  NN )
3736nnred 9777 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  RR )
38 flltp1 10948 . . . . . . . 8  |-  ( ( ( log `  X
)  /  ( log `  K ) )  e.  RR  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
3922, 38syl 15 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  (
( |_ `  (
( log `  X
)  /  ( log `  K ) ) )  +  1 ) )
4039, 27syl6breqr 4079 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  M
)
41 elfzle1 10815 . . . . . . 7  |-  ( J  e.  ( M ... N )  ->  M  <_  J )
4241adantl 452 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  M  <_  J )
4322, 32, 37, 40, 42ltletrd 8992 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  X )  / 
( log `  K
) )  <  J
)
444, 37, 21ltdivmul2d 10454 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  X
)  /  ( log `  K ) )  < 
J  <->  ( log `  X
)  <  ( J  x.  ( log `  K
) ) ) )
4543, 44mpbid 201 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( J  x.  ( log `  K ) ) )
4616adantr 451 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  K  e.  RR+ )
47 elfzelz 10814 . . . . . 6  |-  ( J  e.  ( M ... N )  ->  J  e.  ZZ )
4847adantl 452 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  ZZ )
49 relogexp 19965 . . . . 5  |-  ( ( K  e.  RR+  /\  J  e.  ZZ )  ->  ( log `  ( K ^ J ) )  =  ( J  x.  ( log `  K ) ) )
5046, 48, 49syl2anc 642 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( K ^ J
) )  =  ( J  x.  ( log `  K ) ) )
5145, 50breqtrrd 4065 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  X )  <  ( log `  ( K ^ J ) ) )
5246, 48rpexpcld 11284 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  e.  RR+ )
53 logltb 19969 . . . 4  |-  ( ( X  e.  RR+  /\  ( K ^ J )  e.  RR+ )  ->  ( X  <  ( K ^ J )  <->  ( log `  X )  <  ( log `  ( K ^ J ) ) ) )
543, 52, 53syl2anc 642 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  <->  ( log `  X
)  <  ( log `  ( K ^ J
) ) ) )
5551, 54mpbird 223 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  X  <  ( K ^ J ) )
5650oveq2d 5890 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  ( log `  ( K ^ J ) ) )  =  ( 2  x.  ( J  x.  ( log `  K ) ) ) )
57 2z 10070 . . . . . . . 8  |-  2  e.  ZZ
58 relogexp 19965 . . . . . . . 8  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( ( K ^ J ) ^
2 ) )  =  ( 2  x.  ( log `  ( K ^ J ) ) ) )
5952, 57, 58sylancl 643 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( 2  x.  ( log `  ( K ^ J
) ) ) )
60 2cn 9832 . . . . . . . . 9  |-  2  e.  CC
6160a1i 10 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  CC )
6237recnd 8877 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  e.  CC )
6346relogcld 19990 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  RR )
6463recnd 8877 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  K )  e.  CC )
6561, 62, 64mulassd 8874 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  =  ( 2  x.  ( J  x.  ( log `  K
) ) ) )
6656, 59, 653eqtr4d 2338 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  =  ( ( 2  x.  J
)  x.  ( log `  K ) ) )
67 elfzle2 10816 . . . . . . . . . . 11  |-  ( J  e.  ( M ... N )  ->  J  <_  N )
6867adantl 452 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  N )
6968, 28syl6breq 4078 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
705, 6, 7, 8, 9, 10, 11, 12, 13, 14, 23, 1, 24, 25, 26pntlemb 20762 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
7170simp1d 967 . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  RR+ )
7271adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  Z  e.  RR+ )
7372relogcld 19990 . . . . . . . . . . . 12  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  Z )  e.  RR )
7473, 21rerpdivcld 10433 . . . . . . . . . . 11  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( log `  Z )  / 
( log `  K
) )  e.  RR )
7574rehalfcld 9974 . . . . . . . . . 10  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 )  e.  RR )
76 flge 10953 . . . . . . . . . 10  |-  ( ( ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  e.  RR  /\  J  e.  ZZ )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
)  <->  J  <_  ( |_
`  ( ( ( log `  Z )  /  ( log `  K
) )  /  2
) ) ) )
7775, 48, 76syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( J  <_  ( ( ( log `  Z )  /  ( log `  K ) )  /  2 )  <->  J  <_  ( |_ `  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) ) )
7869, 77mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
79 2re 9831 . . . . . . . . . 10  |-  2  e.  RR
8079a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  2  e.  RR )
81 2pos 9844 . . . . . . . . . 10  |-  0  <  2
8281a1i 10 . . . . . . . . 9  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  0  <  2 )
83 lemuldiv2 9652 . . . . . . . . 9  |-  ( ( J  e.  RR  /\  ( ( log `  Z
)  /  ( log `  K ) )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) )  <->  J  <_  ( ( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8437, 74, 80, 82, 83syl112anc 1186 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  <_  ( ( log `  Z )  /  ( log `  K ) )  <-> 
J  <_  ( (
( log `  Z
)  /  ( log `  K ) )  / 
2 ) ) )
8578, 84mpbird 223 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  <_ 
( ( log `  Z
)  /  ( log `  K ) ) )
86 remulcl 8838 . . . . . . . . 9  |-  ( ( 2  e.  RR  /\  J  e.  RR )  ->  ( 2  x.  J
)  e.  RR )
8779, 37, 86sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( 2  x.  J )  e.  RR )
8887, 73, 21lemuldivd 10451 . . . . . . 7  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( 2  x.  J
)  x.  ( log `  K ) )  <_ 
( log `  Z
)  <->  ( 2  x.  J )  <_  (
( log `  Z
)  /  ( log `  K ) ) ) )
8985, 88mpbird 223 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
2  x.  J )  x.  ( log `  K
) )  <_  ( log `  Z ) )
9066, 89eqbrtrd 4059 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) )
91 rpexpcl 11138 . . . . . . 7  |-  ( ( ( K ^ J
)  e.  RR+  /\  2  e.  ZZ )  ->  (
( K ^ J
) ^ 2 )  e.  RR+ )
9252, 57, 91sylancl 643 . . . . . 6  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  e.  RR+ )
9392, 72logled 19994 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( (
( K ^ J
) ^ 2 )  <_  Z  <->  ( log `  ( ( K ^ J ) ^ 2 ) )  <_  ( log `  Z ) ) )
9490, 93mpbird 223 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  Z
)
9572rprege0d 10413 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( Z  e.  RR  /\  0  <_  Z ) )
96 resqrth 11757 . . . . 5  |-  ( ( Z  e.  RR  /\  0  <_  Z )  -> 
( ( sqr `  Z
) ^ 2 )  =  Z )
9795, 96syl 15 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z ) ^
2 )  =  Z )
9894, 97breqtrrd 4065 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) )
9952rprege0d 10413 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  e.  RR  /\  0  <_ 
( K ^ J
) ) )
10072rpsqrcld 11910 . . . . 5  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( sqr `  Z )  e.  RR+ )
101100rprege0d 10413 . . . 4  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( sqr `  Z )  e.  RR  /\  0  <_ 
( sqr `  Z
) ) )
102 le2sq 11194 . . . 4  |-  ( ( ( ( K ^ J )  e.  RR  /\  0  <_  ( K ^ J ) )  /\  ( ( sqr `  Z
)  e.  RR  /\  0  <_  ( sqr `  Z
) ) )  -> 
( ( K ^ J )  <_  ( sqr `  Z )  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10399, 101, 102syl2anc 642 . . 3  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( ( K ^ J )  <_ 
( sqr `  Z
)  <->  ( ( K ^ J ) ^
2 )  <_  (
( sqr `  Z
) ^ 2 ) ) )
10498, 103mpbird 223 . 2  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( K ^ J )  <_  ( sqr `  Z ) )
10555, 104jca 518 1  |-  ( (
ph  /\  J  e.  ( M ... N ) )  ->  ( X  <  ( K ^ J
)  /\  ( K ^ J )  <_  ( sqr `  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   ZZcz 10040  ;cdc 10140   ZZ>=cuz 10246   RR+crp 10370   (,)cioo 10672   [,)cico 10674   ...cfz 10798   |_cfl 10940   ^cexp 11120   sqrcsqr 11734   expce 12359   _eceu 12360   logclog 19928  ψcchp 20346
This theorem is referenced by:  pntlemr  20767  pntlemj  20768  pntlemi  20769  pntlemf  20770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930
  Copyright terms: Public domain W3C validator