MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Unicode version

Theorem pntlemn 21162
Description: Lemma for pnt 21176. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem1.a  |-  ( ph  ->  A  e.  RR+ )
pntlem1.b  |-  ( ph  ->  B  e.  RR+ )
pntlem1.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlem1.d  |-  D  =  ( A  +  1 )
pntlem1.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlem1.u  |-  ( ph  ->  U  e.  RR+ )
pntlem1.u2  |-  ( ph  ->  U  <_  A )
pntlem1.e  |-  E  =  ( U  /  D
)
pntlem1.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlem1.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlem1.x  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
pntlem1.c  |-  ( ph  ->  C  e.  RR+ )
pntlem1.w  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
pntlem1.z  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
pntlem1.m  |-  M  =  ( ( |_ `  ( ( log `  X
)  /  ( log `  K ) ) )  +  1 )
pntlem1.n  |-  N  =  ( |_ `  (
( ( log `  Z
)  /  ( log `  K ) )  / 
2 ) )
pntlem1.U  |-  ( ph  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemn  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Distinct variable groups:    z, C    z, J    z, L    z, K    z, M    z, N    z, R    z, U    z, W    z, X    z, Y    z, a, E    z, Z
Allowed substitution hints:    ph( z, a)    A( z, a)    B( z, a)    C( a)    D( z, a)    R( a)    U( a)    F( z, a)    J( a)    K( a)    L( a)    M( a)    N( a)    W( a)    X( a)    Y( a)    Z( a)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
21adantr 452 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR+ )
32rpred 10581 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  U  e.  RR )
4 simprl 733 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  NN )
53, 4nndivred 9981 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( U  /  J
)  e.  RR )
6 pntlem1.r . . . . . . . . . . 11  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
7 pntlem1.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR+ )
8 pntlem1.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR+ )
9 pntlem1.l . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
10 pntlem1.d . . . . . . . . . . 11  |-  D  =  ( A  +  1 )
11 pntlem1.f . . . . . . . . . . 11  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
12 pntlem1.u2 . . . . . . . . . . 11  |-  ( ph  ->  U  <_  A )
13 pntlem1.e . . . . . . . . . . 11  |-  E  =  ( U  /  D
)
14 pntlem1.k . . . . . . . . . . 11  |-  K  =  ( exp `  ( B  /  E ) )
15 pntlem1.y . . . . . . . . . . 11  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
16 pntlem1.x . . . . . . . . . . 11  |-  ( ph  ->  ( X  e.  RR+  /\  Y  <  X ) )
17 pntlem1.c . . . . . . . . . . 11  |-  ( ph  ->  C  e.  RR+ )
18 pntlem1.w . . . . . . . . . . 11  |-  W  =  ( ( ( Y  +  ( 4  / 
( L  x.  E
) ) ) ^
2 )  +  ( ( ( X  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  C
) ) ) ) )
19 pntlem1.z . . . . . . . . . . 11  |-  ( ph  ->  Z  e.  ( W [,)  +oo ) )
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 21159 . . . . . . . . . 10  |-  ( ph  ->  ( Z  e.  RR+  /\  ( 1  <  Z  /\  _e  <_  ( sqr `  Z )  /\  ( sqr `  Z )  <_ 
( Z  /  Y
) )  /\  (
( 4  /  ( L  x.  E )
)  <_  ( sqr `  Z )  /\  (
( ( log `  X
)  /  ( log `  K ) )  +  2 )  <_  (
( ( log `  Z
)  /  ( log `  K ) )  / 
4 )  /\  (
( U  x.  3 )  +  C )  <_  ( ( ( U  -  E )  x.  ( ( L  x.  ( E ^
2 ) )  / 
(; 3 2  x.  B
) ) )  x.  ( log `  Z
) ) ) ) )
2120simp1d 969 . . . . . . . . 9  |-  ( ph  ->  Z  e.  RR+ )
2221adantr 452 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR+ )
234nnrpd 10580 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR+ )
2422, 23rpdivcld 10598 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR+ )
256pntrf 21125 . . . . . . . 8  |-  R : RR+
--> RR
2625ffvelrni 5809 . . . . . . 7  |-  ( ( Z  /  J )  e.  RR+  ->  ( R `
 ( Z  /  J ) )  e.  RR )
2724, 26syl 16 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  RR )
2827, 22rerpdivcld 10608 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  RR )
2928recnd 9048 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  Z
)  e.  CC )
3029abscld 12166 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  e.  RR )
315, 30resubcld 9398 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( U  /  J )  -  ( abs `  ( ( R `
 ( Z  /  J ) )  /  Z ) ) )  e.  RR )
3223relogcld 20386 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  J
)  e.  RR )
3327recnd 9048 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( R `  ( Z  /  J ) )  e.  CC )
3422rpcnne0d 10590 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  e.  CC  /\  Z  =/=  0 ) )
3523rpcnne0d 10590 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  CC  /\  J  =/=  0 ) )
36 divdiv2 9659 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 )  /\  ( J  e.  CC  /\  J  =/=  0 ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
3733, 34, 35, 36syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  x.  J )  /  Z ) )
384nncnd 9949 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  CC )
39 div23 9630 . . . . . . . . 9  |-  ( ( ( R `  ( Z  /  J ) )  e.  CC  /\  J  e.  CC  /\  ( Z  e.  CC  /\  Z  =/=  0 ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4033, 38, 34, 39syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( R `
 ( Z  /  J ) )  x.  J )  /  Z
)  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4137, 40eqtrd 2420 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) )  =  ( ( ( R `  ( Z  /  J ) )  /  Z )  x.  J ) )
4241fveq2d 5673 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) ) )
4329, 38absmuld 12184 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( ( R `  ( Z  /  J
) )  /  Z
)  x.  J ) )  =  ( ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) ) )
4423rprege0d 10588 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( J  e.  RR  /\  0  <_  J )
)
45 absid 12029 . . . . . . . 8  |-  ( ( J  e.  RR  /\  0  <_  J )  -> 
( abs `  J
)  =  J )
4644, 45syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  J
)  =  J )
4746oveq2d 6037 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  ( abs `  J
) )  =  ( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J ) )
4842, 43, 473eqtrd 2424 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  =  ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
) )
4924rpred 10581 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  RR )
50 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  <_  ( Z  /  Y ) )
5123rpred 10581 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  J  e.  RR )
5222rpred 10581 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Z  e.  RR )
5315simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  RR+ )
5453adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR+ )
5551, 52, 54lemuldiv2d 10627 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  J  <_  ( Z  /  Y ) ) )
5650, 55mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Y  x.  J
)  <_  Z )
5754rpred 10581 . . . . . . . . 9  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  e.  RR )
5857, 52, 23lemuldivd 10626 . . . . . . . 8  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Y  x.  J )  <_  Z  <->  Y  <_  ( Z  /  J ) ) )
5956, 58mpbid 202 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  Y  <_  ( Z  /  J ) )
60 elicopnf 10933 . . . . . . . 8  |-  ( Y  e.  RR  ->  (
( Z  /  J
)  e.  ( Y [,)  +oo )  <->  ( ( Z  /  J )  e.  RR  /\  Y  <_ 
( Z  /  J
) ) ) )
6157, 60syl 16 . . . . . . 7  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( Z  /  J )  e.  ( Y [,)  +oo )  <->  ( ( Z  /  J
)  e.  RR  /\  Y  <_  ( Z  /  J ) ) ) )
6249, 59, 61mpbir2and 889 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( Z  /  J
)  e.  ( Y [,)  +oo ) )
63 pntlem1.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6463adantr 452 . . . . . 6  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  ->  A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U
)
65 fveq2 5669 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  ( R `  z )  =  ( R `  ( Z  /  J
) ) )
66 id 20 . . . . . . . . . 10  |-  ( z  =  ( Z  /  J )  ->  z  =  ( Z  /  J ) )
6765, 66oveq12d 6039 . . . . . . . . 9  |-  ( z  =  ( Z  /  J )  ->  (
( R `  z
)  /  z )  =  ( ( R `
 ( Z  /  J ) )  / 
( Z  /  J
) ) )
6867fveq2d 5673 . . . . . . . 8  |-  ( z  =  ( Z  /  J )  ->  ( abs `  ( ( R `
 z )  / 
z ) )  =  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) ) )
6968breq1d 4164 . . . . . . 7  |-  ( z  =  ( Z  /  J )  ->  (
( abs `  (
( R `  z
)  /  z ) )  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  ( Z  /  J ) ) )  <_  U )
)
7069rspcv 2992 . . . . . 6  |-  ( ( Z  /  J )  e.  ( Y [,)  +oo )  ->  ( A. z  e.  ( Y [,)  +oo ) ( abs `  ( ( R `  z )  /  z
) )  <_  U  ->  ( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U ) )
7162, 64, 70sylc 58 . . . . 5  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  ( Z  /  J ) ) )  <_  U )
7248, 71eqbrtrrd 4176 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  x.  J )  <_  U )
7330, 3, 23lemuldivd 10626 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( ( ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  x.  J
)  <_  U  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7472, 73mpbid 202 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( abs `  (
( R `  ( Z  /  J ) )  /  Z ) )  <_  ( U  /  J ) )
755, 30subge0d 9549 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 0  <_  (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  <->  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) )  <_  ( U  /  J ) ) )
7674, 75mpbird 224 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( ( U  /  J )  -  ( abs `  ( ( R `  ( Z  /  J ) )  /  Z ) ) ) )
77 log1 20348 . . 3  |-  ( log `  1 )  =  0
78 nnge1 9959 . . . . 5  |-  ( J  e.  NN  ->  1  <_  J )
7978ad2antrl 709 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
1  <_  J )
80 1rp 10549 . . . . 5  |-  1  e.  RR+
81 logleb 20366 . . . . 5  |-  ( ( 1  e.  RR+  /\  J  e.  RR+ )  ->  (
1  <_  J  <->  ( log `  1 )  <_  ( log `  J ) ) )
8280, 23, 81sylancr 645 . . . 4  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( 1  <_  J  <->  ( log `  1 )  <_  ( log `  J
) ) )
8379, 82mpbid 202 . . 3  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
( log `  1
)  <_  ( log `  J ) )
8477, 83syl5eqbrr 4188 . 2  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( log `  J ) )
8531, 32, 76, 84mulge0d 9536 1  |-  ( (
ph  /\  ( J  e.  NN  /\  J  <_ 
( Z  /  Y
) ) )  -> 
0  <_  ( (
( U  /  J
)  -  ( abs `  ( ( R `  ( Z  /  J
) )  /  Z
) ) )  x.  ( log `  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   class class class wbr 4154    e. cmpt 4208   ` cfv 5395  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    +oocpnf 9051    < clt 9054    <_ cle 9055    - cmin 9224    / cdiv 9610   NNcn 9933   2c2 9982   3c3 9983   4c4 9984  ;cdc 10315   RR+crp 10545   (,)cioo 10849   [,)cico 10851   |_cfl 11129   ^cexp 11310   sqrcsqr 11966   abscabs 11967   expce 12592   _eceu 12593   logclog 20320  ψcchp 20743
This theorem is referenced by:  pntlemj  21165  pntlemf  21167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002  ax-addf 9003  ax-mulf 9004
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-of 6245  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-2o 6662  df-oadd 6665  df-er 6842  df-map 6957  df-pm 6958  df-ixp 7001  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-fi 7352  df-sup 7382  df-oi 7413  df-card 7760  df-cda 7982  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-4 9993  df-5 9994  df-6 9995  df-7 9996  df-8 9997  df-9 9998  df-10 9999  df-n0 10155  df-z 10216  df-dec 10316  df-uz 10422  df-q 10508  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmul 10645  df-ioo 10853  df-ioc 10854  df-ico 10855  df-icc 10856  df-fz 10977  df-fzo 11067  df-fl 11130  df-mod 11179  df-seq 11252  df-exp 11311  df-fac 11495  df-bc 11522  df-hash 11547  df-shft 11810  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-limsup 12193  df-clim 12210  df-rlim 12211  df-sum 12408  df-ef 12598  df-e 12599  df-sin 12600  df-cos 12601  df-pi 12603  df-dvds 12781  df-gcd 12935  df-prm 13008  df-pc 13139  df-struct 13399  df-ndx 13400  df-slot 13401  df-base 13402  df-sets 13403  df-ress 13404  df-plusg 13470  df-mulr 13471  df-starv 13472  df-sca 13473  df-vsca 13474  df-tset 13476  df-ple 13477  df-ds 13479  df-unif 13480  df-hom 13481  df-cco 13482  df-rest 13578  df-topn 13579  df-topgen 13595  df-pt 13596  df-prds 13599  df-xrs 13654  df-0g 13655  df-gsum 13656  df-qtop 13661  df-imas 13662  df-xps 13664  df-mre 13739  df-mrc 13740  df-acs 13742  df-mnd 14618  df-submnd 14667  df-mulg 14743  df-cntz 15044  df-cmn 15342  df-xmet 16620  df-met 16621  df-bl 16622  df-mopn 16623  df-fbas 16624  df-fg 16625  df-cnfld 16628  df-top 16887  df-bases 16889  df-topon 16890  df-topsp 16891  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086  df-lp 17124  df-perf 17125  df-cn 17214  df-cnp 17215  df-haus 17302  df-tx 17516  df-hmeo 17709  df-fil 17800  df-fm 17892  df-flim 17893  df-flf 17894  df-xms 18260  df-ms 18261  df-tms 18262  df-cncf 18780  df-limc 19621  df-dv 19622  df-log 20322  df-vma 20748  df-chp 20749
  Copyright terms: Public domain W3C validator