MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemp Structured version   Unicode version

Theorem pntlemp 21296
Description: Lemma for pnt 21300. Wrapping up more quantifiers. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem3.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntlem3.a  |-  ( ph  ->  A  e.  RR+ )
pntlem3.A  |-  ( ph  ->  A. x  e.  RR+  ( abs `  ( ( R `  x )  /  x ) )  <_  A )
pntlemp.b  |-  ( ph  ->  B  e.  RR+ )
pntlemp.l  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
pntlemp.d  |-  D  =  ( A  +  1 )
pntlemp.f  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
pntlemp.K  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
pntlemp.u  |-  ( ph  ->  U  e.  RR+ )
pntlemp.u2  |-  ( ph  ->  U  <_  A )
pntlemp.e  |-  E  =  ( U  /  D
)
pntlemp.k  |-  K  =  ( exp `  ( B  /  E ) )
pntlemp.y  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
pntlemp.U  |-  ( ph  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
Assertion
Ref Expression
pntlemp  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Distinct variable groups:    w, v, x, y, z, A    e,
a, k, u, v, w, x, y, z, D    v, F, w, y, z    e, K, k, v, w, x, y, z    R, e, k, u, v, w, x, y, z    E, a, e, k, u, v, w, x, y, z    Y, a, k, v, w, y, z    e, L, k, u, v, w, x, y, z    ph, v, w, x, y    B, e, k, v, w, x, y, z    v, U, w, z
Allowed substitution hints:    ph( z, u, e, k, a)    A( u, e, k, a)    B( u, a)    R( a)    U( x, y, u, e, k, a)    F( x, u, e, k, a)    K( u, a)    L( a)    Y( x, u, e)

Proof of Theorem pntlemp
Dummy variables  t 
c  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pntlem3.r . . . . . 6  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2 pntlem3.a . . . . . 6  |-  ( ph  ->  A  e.  RR+ )
3 pntlemp.b . . . . . 6  |-  ( ph  ->  B  e.  RR+ )
4 pntlemp.l . . . . . 6  |-  ( ph  ->  L  e.  ( 0 (,) 1 ) )
5 pntlemp.d . . . . . 6  |-  D  =  ( A  +  1 )
6 pntlemp.f . . . . . 6  |-  F  =  ( ( 1  -  ( 1  /  D
) )  x.  (
( L  /  (; 3 2  x.  B ) )  /  ( D ^
2 ) ) )
7 pntlemp.u . . . . . 6  |-  ( ph  ->  U  e.  RR+ )
8 pntlemp.u2 . . . . . 6  |-  ( ph  ->  U  <_  A )
9 pntlemp.e . . . . . 6  |-  E  =  ( U  /  D
)
10 pntlemp.k . . . . . 6  |-  K  =  ( exp `  ( B  /  E ) )
111, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 21281 . . . . 5  |-  ( ph  ->  ( E  e.  RR+  /\  K  e.  RR+  /\  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E )  e.  RR+ ) ) )
1211simp3d 971 . . . 4  |-  ( ph  ->  ( E  e.  ( 0 (,) 1 )  /\  1  <  K  /\  ( U  -  E
)  e.  RR+ )
)
1312simp1d 969 . . 3  |-  ( ph  ->  E  e.  ( 0 (,) 1 ) )
14 pntlemp.K . . 3  |-  ( ph  ->  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )
15 oveq2 6081 . . . . . . . . . 10  |-  ( e  =  E  ->  ( B  /  e )  =  ( B  /  E
) )
1615fveq2d 5724 . . . . . . . . 9  |-  ( e  =  E  ->  ( exp `  ( B  / 
e ) )  =  ( exp `  ( B  /  E ) ) )
1716, 10syl6eqr 2485 . . . . . . . 8  |-  ( e  =  E  ->  ( exp `  ( B  / 
e ) )  =  K )
1817oveq1d 6088 . . . . . . 7  |-  ( e  =  E  ->  (
( exp `  ( B  /  e ) ) [,)  +oo )  =  ( K [,)  +oo )
)
19 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( e  =  E  ->  ( L  x.  e )  =  ( L  x.  E ) )
2019oveq2d 6089 . . . . . . . . . . . . 13  |-  ( e  =  E  ->  (
1  +  ( L  x.  e ) )  =  ( 1  +  ( L  x.  E
) ) )
2120oveq1d 6088 . . . . . . . . . . . 12  |-  ( e  =  E  ->  (
( 1  +  ( L  x.  e ) )  x.  z )  =  ( ( 1  +  ( L  x.  E ) )  x.  z ) )
2221breq1d 4214 . . . . . . . . . . 11  |-  ( e  =  E  ->  (
( ( 1  +  ( L  x.  e
) )  x.  z
)  <  ( k  x.  y )  <->  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) ) )
2322anbi2d 685 . . . . . . . . . 10  |-  ( e  =  E  ->  (
( y  <  z  /\  ( ( 1  +  ( L  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  <->  ( y  <  z  /\  ( ( 1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) ) ) )
2421oveq2d 6089 . . . . . . . . . . 11  |-  ( e  =  E  ->  (
z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) )  =  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) )
25 breq2 4208 . . . . . . . . . . 11  |-  ( e  =  E  ->  (
( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  ( abs `  ( ( R `  u )  /  u
) )  <_  E
) )
2624, 25raleqbidv 2908 . . . . . . . . . 10  |-  ( e  =  E  ->  ( A. u  e.  (
z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  e  <->  A. u  e.  ( z [,] (
( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  (
( R `  u
)  /  u ) )  <_  E )
)
2723, 26anbi12d 692 . . . . . . . . 9  |-  ( e  =  E  ->  (
( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
2827rexbidv 2718 . . . . . . . 8  |-  ( e  =  E  ->  ( E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  E. z  e.  RR+  ( ( y  <  z  /\  (
( 1  +  ( L  x.  E ) )  x.  z )  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
2928ralbidv 2717 . . . . . . 7  |-  ( e  =  E  ->  ( A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  e
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  e )  <->  A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
3018, 29raleqbidv 2908 . . . . . 6  |-  ( e  =  E  ->  ( A. k  e.  (
( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  A. k  e.  ( K [,)  +oo ) A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
3130rexbidv 2718 . . . . 5  |-  ( e  =  E  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  E. x  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
32 oveq1 6080 . . . . . . . 8  |-  ( x  =  t  ->  (
x (,)  +oo )  =  ( t (,)  +oo ) )
3332raleqdv 2902 . . . . . . 7  |-  ( x  =  t  ->  ( A. y  e.  (
x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
3433ralbidv 2717 . . . . . 6  |-  ( x  =  t  ->  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  <->  A. k  e.  ( K [,)  +oo ) A. y  e.  (
t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) ) )
3534cbvrexv 2925 . . . . 5  |-  ( E. x  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  <->  E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
3631, 35syl6bb 253 . . . 4  |-  ( e  =  E  ->  ( E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
)  <->  E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
3736rspcva 3042 . . 3  |-  ( ( E  e.  ( 0 (,) 1 )  /\  A. e  e.  ( 0 (,) 1 ) E. x  e.  RR+  A. k  e.  ( ( exp `  ( B  /  e ) ) [,)  +oo ) A. y  e.  ( x (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  e ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  e
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  e
) )  ->  E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
3813, 14, 37syl2anc 643 . 2  |-  ( ph  ->  E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) )
39 pntlemp.y . . . . 5  |-  ( ph  ->  ( Y  e.  RR+  /\  1  <_  Y )
)
4039simpld 446 . . . 4  |-  ( ph  ->  Y  e.  RR+ )
4140rpred 10640 . . 3  |-  ( ph  ->  Y  e.  RR )
4239simprd 450 . . 3  |-  ( ph  ->  1  <_  Y )
431pntrlog2bnd 21270 . . 3  |-  ( ( Y  e.  RR  /\  1  <_  Y )  ->  E. c  e.  RR+  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )
4441, 42, 43syl2anc 643 . 2  |-  ( ph  ->  E. c  e.  RR+  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )
45 reeanv 2867 . . 3  |-  ( E. t  e.  RR+  E. c  e.  RR+  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )  <->  ( E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  /\  E. c  e.  RR+  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) )
462adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  A  e.  RR+ )
473adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  B  e.  RR+ )
484adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  L  e.  ( 0 (,) 1 ) )
497adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  U  e.  RR+ )
508adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  U  <_  A
)
5139adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  ( Y  e.  RR+  /\  1  <_  Y
) )
52 simpl 444 . . . . . . . . 9  |-  ( ( t  e.  RR+  /\  c  e.  RR+ )  ->  t  e.  RR+ )
53 rpaddcl 10624 . . . . . . . . 9  |-  ( ( Y  e.  RR+  /\  t  e.  RR+ )  ->  ( Y  +  t )  e.  RR+ )
5440, 52, 53syl2an 464 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  ( Y  +  t )  e.  RR+ )
55 ltaddrp 10636 . . . . . . . . 9  |-  ( ( Y  e.  RR  /\  t  e.  RR+ )  ->  Y  <  ( Y  +  t ) )
5641, 52, 55syl2an 464 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  Y  <  ( Y  +  t ) )
5754, 56jca 519 . . . . . . 7  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  (
( Y  +  t )  e.  RR+  /\  Y  <  ( Y  +  t ) ) )
5857adantrr 698 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  ( ( Y  +  t )  e.  RR+  /\  Y  <  ( Y  +  t )
) )
59 simprlr 740 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  c  e.  RR+ )
60 eqid 2435 . . . . . 6  |-  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( ( Y  +  t )  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  c ) ) ) ) )  =  ( ( ( Y  +  ( 4  /  ( L  x.  E ) ) ) ^ 2 )  +  ( ( ( ( Y  +  t )  x.  ( K ^ 2 ) ) ^ 4 )  +  ( exp `  (
( (; 3 2  x.  B
)  /  ( ( U  -  E )  x.  ( L  x.  ( E ^ 2 ) ) ) )  x.  ( ( U  x.  3 )  +  c ) ) ) ) )
61 pntlemp.U . . . . . . 7  |-  ( ph  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
6261adantr 452 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  A. z  e.  ( Y [,)  +oo )
( abs `  (
( R `  z
)  /  z ) )  <_  U )
63 rpxr 10611 . . . . . . . . . 10  |-  ( t  e.  RR+  ->  t  e. 
RR* )
6463ad2antrl 709 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  t  e.  RR* )
65 rpre 10610 . . . . . . . . . . 11  |-  ( t  e.  RR+  ->  t  e.  RR )
6665ad2antrl 709 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  t  e.  RR )
6754rpred 10640 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  ( Y  +  t )  e.  RR )
6840adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  Y  e.  RR+ )
6966, 68ltaddrp2d 10670 . . . . . . . . . 10  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  t  <  ( Y  +  t ) )
7066, 67, 69ltled 9213 . . . . . . . . 9  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  t  <_  ( Y  +  t ) )
71 iooss1 10943 . . . . . . . . 9  |-  ( ( t  e.  RR*  /\  t  <_  ( Y  +  t ) )  ->  (
( Y  +  t ) (,)  +oo )  C_  ( t (,)  +oo ) )
7264, 70, 71syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  (
( Y  +  t ) (,)  +oo )  C_  ( t (,)  +oo ) )
7372adantrr 698 . . . . . . 7  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  ( ( Y  +  t ) (,) 
+oo )  C_  (
t (,)  +oo ) )
74 simprrl 741 . . . . . . 7  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  A. k  e.  ( K [,)  +oo ) A. y  e.  (
t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
75 ssralv 3399 . . . . . . . 8  |-  ( ( ( Y  +  t ) (,)  +oo )  C_  ( t (,)  +oo )  ->  ( A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  ->  A. y  e.  ( ( Y  +  t ) (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
7675ralimdv 2777 . . . . . . 7  |-  ( ( ( Y  +  t ) (,)  +oo )  C_  ( t (,)  +oo )  ->  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  ->  A. k  e.  ( K [,)  +oo ) A. y  e.  ( ( Y  +  t ) (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
) ) )
7773, 74, 76sylc 58 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  A. k  e.  ( K [,)  +oo ) A. y  e.  (
( Y  +  t ) (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E ) )
78 simprrr 742 . . . . . 6  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  A. z  e.  ( 1 (,)  +oo )
( ( ( ( abs `  ( R `
 z ) )  x.  ( log `  z
) )  -  (
( 2  /  ( log `  z ) )  x.  sum_ n  e.  ( 1 ... ( |_
`  ( z  /  Y ) ) ) ( ( abs `  ( R `  ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )
791, 46, 47, 48, 5, 6, 49, 50, 9, 10, 51, 58, 59, 60, 62, 77, 78pntleme 21294 . . . . 5  |-  ( (
ph  /\  ( (
t  e.  RR+  /\  c  e.  RR+ )  /\  ( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  ( ( y  < 
z  /\  ( (
1  +  ( L  x.  E ) )  x.  z )  < 
( k  x.  y
) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E
) )  x.  z
) ) ( abs `  ( ( R `  u )  /  u
) )  <_  E
)  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c ) ) )  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
8079expr 599 . . . 4  |-  ( (
ph  /\  ( t  e.  RR+  /\  c  e.  RR+ ) )  ->  (
( A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) ) )
8180rexlimdvva 2829 . . 3  |-  ( ph  ->  ( E. t  e.  RR+  E. c  e.  RR+  ( A. k  e.  ( K [,)  +oo ) A. y  e.  (
t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  /\  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) ) )
8245, 81syl5bir 210 . 2  |-  ( ph  ->  ( ( E. t  e.  RR+  A. k  e.  ( K [,)  +oo ) A. y  e.  ( t (,)  +oo ) E. z  e.  RR+  (
( y  <  z  /\  ( ( 1  +  ( L  x.  E
) )  x.  z
)  <  ( k  x.  y ) )  /\  A. u  e.  ( z [,] ( ( 1  +  ( L  x.  E ) )  x.  z ) ) ( abs `  ( ( R `  u )  /  u ) )  <_  E )  /\  E. c  e.  RR+  A. z  e.  ( 1 (,)  +oo ) ( ( ( ( abs `  ( R `  z )
)  x.  ( log `  z ) )  -  ( ( 2  / 
( log `  z
) )  x.  sum_ n  e.  ( 1 ... ( |_ `  (
z  /  Y ) ) ) ( ( abs `  ( R `
 ( z  /  n ) ) )  x.  ( log `  n
) ) ) )  /  z )  <_ 
c )  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  (
( R `  v
)  /  v ) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) ) )
8338, 44, 82mp2and 661 1  |-  ( ph  ->  E. w  e.  RR+  A. v  e.  ( w [,)  +oo ) ( abs `  ( ( R `  v )  /  v
) )  <_  ( U  -  ( F  x.  ( U ^ 3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   2c2 10041   3c3 10042   4c4 10043  ;cdc 10374   RR+crp 10604   (,)cioo 10908   [,)cico 10910   [,]cicc 10911   ...cfz 11035   |_cfl 11193   ^cexp 11374   abscabs 12031   sum_csu 12471   expce 12656   logclog 20444  ψcchp 20867
This theorem is referenced by:  pntleml  21297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-o1 12276  df-lo1 12277  df-sum 12472  df-ef 12662  df-e 12663  df-sin 12664  df-cos 12665  df-pi 12667  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446  df-cxp 20447  df-em 20823  df-cht 20871  df-vma 20872  df-chp 20873  df-ppi 20874  df-mu 20875
  Copyright terms: Public domain W3C validator