MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem1 Unicode version

Theorem pntrlog2bndlem1 20742
Description: The sum of selberg3r 20734 and selberg4r 20735. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrlog2bndlem1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 )
Distinct variable groups:    i, a, n, x    S, n, x    R, n, x
Allowed substitution hints:    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem1
Dummy variables  k  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 8853 . . . 4  |-  1  e.  RR
21a1i 10 . . 3  |-  (  T. 
->  1  e.  RR )
3 pntrlog2bnd.r . . . . 5  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
43selberg34r 20736 . . . 4  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )
5 elioore 10702 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
65adantl 452 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
7 1rp 10374 . . . . . . . . . . . 12  |-  1  e.  RR+
87a1i 10 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
98rpred 10406 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
10 eliooord 10726 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1110adantl 452 . . . . . . . . . . . . 13  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1211simpld 445 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
139, 6, 12ltled 8983 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
146, 8, 13rpgecld 10441 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
153pntrf 20728 . . . . . . . . . . 11  |-  R : RR+
--> RR
1615ffvelrni 5680 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( R `
 x )  e.  RR )
1714, 16syl 15 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  e.  RR )
1814relogcld 19990 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR )
1917, 18remulcld 8879 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  RR )
20 fzfid 11051 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
2114adantr 451 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
22 elfznn 10835 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
2322adantl 452 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
2423nnrpd 10405 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2521, 24rpdivcld 10423 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2615ffvelrni 5680 . . . . . . . . . . . 12  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
2725, 26syl 15 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
28 fzfid 11051 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... n )  e. 
Fin )
29 sgmss 20360 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  { y  e.  NN  |  y 
||  n }  C_  ( 1 ... n
) )
3023, 29syl 15 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  C_  ( 1 ... n ) )
31 ssfi 7099 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... n
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  n }  C_  ( 1 ... n
) )  ->  { y  e.  NN  |  y 
||  n }  e.  Fin )
3228, 30, 31syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  { y  e.  NN  |  y  ||  n }  e.  Fin )
33 ssrab2 3271 . . . . . . . . . . . . . . . 16  |-  { y  e.  NN  |  y 
||  n }  C_  NN
34 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  { y  e.  NN  | 
y  ||  n }
)
3533, 34sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  m  e.  NN )
36 vmacl 20372 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  (Λ `  m )  e.  RR )
3735, 36syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  m
)  e.  RR )
38 dvdsdivcl 20437 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
n  /  m )  e.  { y  e.  NN  |  y  ||  n } )
3923, 38sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  {
y  e.  NN  | 
y  ||  n }
)
4033, 39sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( n  /  m )  e.  NN )
41 vmacl 20372 . . . . . . . . . . . . . . 15  |-  ( ( n  /  m )  e.  NN  ->  (Λ `  ( n  /  m
) )  e.  RR )
4240, 41syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  (Λ `  (
n  /  m ) )  e.  RR )
4337, 42remulcld 8879 . . . . . . . . . . . . 13  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  e.  RR )
4432, 43fsumrecl 12223 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  RR )
45 vmacl 20372 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  (Λ `  n )  e.  RR )
4623, 45syl 15 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  (Λ `  n
)  e.  RR )
4724relogcld 19990 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
4846, 47remulcld 8879 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  RR )
4944, 48resubcld 9227 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  RR )
5027, 49remulcld 8879 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
5120, 50fsumrecl 12223 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
526, 12rplogcld 19996 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
5351, 52rerpdivcld 10433 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  RR )
5419, 53resubcld 9227 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  RR )
5554, 14rerpdivcld 10433 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  RR )
5655recnd 8877 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x )  e.  CC )
5756lo1o12 12023 . . . 4  |-  (  T. 
->  ( ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  O ( 1 )  <->  ( x  e.  ( 1 (,)  +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_ O ( 1 ) ) )
584, 57mpbii 202 . . 3  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )  e.  <_ O ( 1 ) )
5956abscld 11934 . . 3  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  RR )
6017recnd 8877 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( R `  x )  e.  CC )
6160abscld 11934 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( R `  x ) )  e.  RR )
6261, 18remulcld 8879 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  e.  RR )
6327recnd 8877 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
6463abscld 11934 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
6523nnred 9777 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
66 pntsval.1 . . . . . . . . . . . 12  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
6766pntsf 20738 . . . . . . . . . . 11  |-  S : RR
--> RR
6867ffvelrni 5680 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
6965, 68syl 15 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
701a1i 10 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
7165, 70resubcld 9227 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  RR )
7267ffvelrni 5680 . . . . . . . . . 10  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  e.  RR )
7371, 72syl 15 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  RR )
7469, 73resubcld 9227 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  e.  RR )
7564, 74remulcld 8879 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( ( S `  n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7620, 75fsumrecl 12223 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  e.  RR )
7776, 52rerpdivcld 10433 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) )  e.  RR )
7862, 77resubcld 9227 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  e.  RR )
7978, 14rerpdivcld 10433 . . 3  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  e.  RR )
8018recnd 8877 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  CC )
8160, 80mulcld 8871 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( R `  x
)  x.  ( log `  x ) )  e.  CC )
8251recnd 8877 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
8352rpne0d 10411 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  =/=  0 )
8482, 80, 83divcld 9552 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) )  e.  CC )
8581, 84subcld 9173 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
8685abscld 11934 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( R `  x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  e.  RR )
8782abscld 11934 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
8887, 52rerpdivcld 10433 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  e.  RR )
8962, 88resubcld 9227 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  e.  RR )
9050recnd 8877 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  CC )
9190abscld 11934 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  e.  RR )
9220, 91fsumrecl 12223 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  e.  RR )
9320, 90fsumabs 12275 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) ) )
9449recnd 8877 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) )  e.  CC )
9563, 94absmuld 11952 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  =  ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) ) )
9694abscld 11934 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  e.  RR )
9763absge0d 11942 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( R `
 ( x  /  n ) ) ) )
9844recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  e.  CC )
9948recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (Λ `  n )  x.  ( log `  n ) )  e.  CC )
10098, 99abs2dif2d 11956 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
10173recnd 8877 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  e.  CC )
10298, 99addcld 8870 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  e.  CC )
103101, 102pncan2d 9175 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
104 elfzuz 10810 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  ( ZZ>= `  1 )
)
105104adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( ZZ>= `  1 )
)
106 elfznn 10835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ( 1 ... n )  ->  k  e.  NN )
107106adantl 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  NN )
108 vmacl 20372 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  NN  ->  (Λ `  k )  e.  RR )
109107, 108syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  (Λ `  k
)  e.  RR )
110107nnrpd 10405 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  k  e.  RR+ )
111110relogcld 19990 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( log `  k )  e.  RR )
112109, 111remulcld 8879 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (Λ `  k )  x.  ( log `  k ) )  e.  RR )
113 fzfid 11051 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( 1 ... k )  e. 
Fin )
114 sgmss 20360 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  NN  ->  { y  e.  NN  |  y 
||  k }  C_  ( 1 ... k
) )
115107, 114syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  { y  e.  NN  |  y  ||  k }  C_  ( 1 ... k ) )
116 ssfi 7099 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1 ... k
)  e.  Fin  /\  { y  e.  NN  | 
y  ||  k }  C_  ( 1 ... k
) )  ->  { y  e.  NN  |  y 
||  k }  e.  Fin )
117113, 115, 116syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  { y  e.  NN  |  y  ||  k }  e.  Fin )
118 ssrab2 3271 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  { y  e.  NN  |  y 
||  k }  C_  NN
119 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  { y  e.  NN  | 
y  ||  k }
)
120118, 119sseldi 3191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  m  e.  NN )
121120, 36syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  m
)  e.  RR )
122 dvdsdivcl 20437 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( k  e.  NN  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (
k  /  m )  e.  { y  e.  NN  |  y  ||  k } )
123107, 122sylan 457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  {
y  e.  NN  | 
y  ||  k }
)
124118, 123sseldi 3191 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( k  /  m )  e.  NN )
125 vmacl 20372 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( k  /  m )  e.  NN  ->  (Λ `  ( k  /  m
) )  e.  RR )
126124, 125syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  (Λ `  (
k  /  m ) )  e.  RR )
127121, 126remulcld 8879 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( (  T. 
/\  x  e.  ( 1 (,)  +oo )
)  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n
) )  /\  m  e.  { y  e.  NN  |  y  ||  k } )  ->  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) )  e.  RR )
128117, 127fsumrecl 12223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  sum_ m  e. 
{ y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  e.  RR )
129112, 128readdcld 8878 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (
(Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  RR )
130129recnd 8877 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  k  e.  ( 1 ... n ) )  ->  ( (
(Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  e.  CC )
131 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  (Λ `  k )  =  (Λ `  n ) )
132 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  ( log `  k )  =  ( log `  n
) )
133131, 132oveq12d 5892 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  (
(Λ `  k )  x.  ( log `  k
) )  =  ( (Λ `  n )  x.  ( log `  n
) ) )
134 breq2 4043 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
y  ||  k  <->  y  ||  n ) )
135134rabbidv 2793 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  n  ->  { y  e.  NN  |  y 
||  k }  =  { y  e.  NN  |  y  ||  n }
)
136 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  =  n  ->  (
k  /  m )  =  ( n  /  m ) )
137136fveq2d 5545 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  =  n  ->  (Λ `  ( k  /  m
) )  =  (Λ `  ( n  /  m
) ) )
138137oveq2d 5890 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  n  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
139138adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  =  n  /\  m  e.  { y  e.  NN  |  y  ||  n } )  ->  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) )  =  ( (Λ `  m
)  x.  (Λ `  (
n  /  m ) ) ) )
140135, 139sumeq12rdv 12196 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  n  ->  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m
)  x.  (Λ `  (
k  /  m ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )
141133, 140oveq12d 5892 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  n  ->  (
( (Λ `  k )  x.  ( log `  k
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  k }  ( (Λ `  m )  x.  (Λ `  ( k  /  m
) ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
142105, 130, 141fsumm1 12232 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
14366pntsval2 20741 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  RR  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_
`  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14465, 143syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
14523nnzd 10132 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ZZ )
146 flid 10955 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  ZZ  ->  ( |_ `  n )  =  n )
147145, 146syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  n )  =  n )
148147oveq2d 5890 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  n ) )  =  ( 1 ... n
) )
149148sumeq1d 12190 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  n ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... n
) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
150144, 149eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  sum_ k  e.  ( 1 ... n ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15166pntsval2 20741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  -  1 )  e.  RR  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_
`  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
15271, 151syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( n  -  1
) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
153 1z 10069 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
154153a1i 10 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  ZZ )
155145, 154zsubcld 10138 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  -  1 )  e.  ZZ )
156 flid 10955 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( n  -  1 )  e.  ZZ  ->  ( |_ `  ( n  - 
1 ) )  =  ( n  -  1 ) )
157155, 156syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( |_ `  ( n  -  1 ) )  =  ( n  -  1 ) )
158157oveq2d 5890 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( n  -  1
) ) )  =  ( 1 ... (
n  -  1 ) ) )
159158sumeq1d 12190 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( n  - 
1 ) ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  =  sum_ k  e.  ( 1 ... (
n  -  1 ) ) ( ( (Λ `  k )  x.  ( log `  k ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  k } 
( (Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
160152, 159eqtrd 2328 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  ( n  -  1 ) )  =  sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) ) )
16198, 99addcomd 9030 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( ( (Λ `  n )  x.  ( log `  n ) )  +  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) ) )
162160, 161oveq12d 5892 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  ( n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ k  e.  ( 1 ... ( n  - 
1 ) ) ( ( (Λ `  k
)  x.  ( log `  k ) )  + 
sum_ m  e.  { y  e.  NN  |  y 
||  k }  (
(Λ `  m )  x.  (Λ `  ( k  /  m ) ) ) )  +  ( ( (Λ `  n )  x.  ( log `  n
) )  +  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) ) ) )
163142, 150, 1623eqtr4d 2338 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  =  ( ( S `  (
n  -  1 ) )  +  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )
164163oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( ( S `
 ( n  - 
1 ) )  +  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  -  ( S `
 ( n  - 
1 ) ) ) )
165 vmage0 20375 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  0  <_  (Λ `  m )
)
16635, 165syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  (Λ `  m ) )
167 vmage0 20375 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  /  m )  e.  NN  ->  0  <_  (Λ `  ( n  /  m ) ) )
16840, 167syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  (Λ `  ( n  /  m
) ) )
16937, 42, 166, 168mulge0d 9365 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  {
y  e.  NN  | 
y  ||  n }
)  ->  0  <_  ( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
17032, 43, 169fsumge0 12269 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  sum_
m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
17144, 170absidd 11921 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs ` 
sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  =  sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )
172 vmage0 20375 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  NN  ->  0  <_  (Λ `  n )
)
17323, 172syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  (Λ `  n ) )
17423nnge1d 9804 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
17565, 174logge0d 19997 . . . . . . . . . . . . . . . . . 18  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( log `  n ) )
17646, 47, 173, 175mulge0d 9365 . . . . . . . . . . . . . . . . 17  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( (Λ `  n )  x.  ( log `  n
) ) )
17748, 176absidd 11921 . . . . . . . . . . . . . . . 16  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) )  =  ( (Λ `  n
)  x.  ( log `  n ) ) )
178171, 177oveq12d 5892 . . . . . . . . . . . . . . 15  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) ) )  +  ( abs `  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  =  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  +  ( (Λ `  n
)  x.  ( log `  n ) ) ) )
179103, 164, 1783eqtr4d 2338 . . . . . . . . . . . . . 14  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( S `  ( n  -  1
) ) )  =  ( ( abs `  sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) ) )  +  ( abs `  (
(Λ `  n )  x.  ( log `  n
) ) ) ) )
180100, 179breqtrrd 4065 . . . . . . . . . . . . 13  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  {
y  e.  NN  | 
y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  <_  ( ( S `  n )  -  ( S `  ( n  -  1
) ) ) )
18196, 74, 64, 97, 180lemul2ad 9713 . . . . . . . . . . . 12  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  x.  ( abs `  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18295, 181eqbrtrd 4059 . . . . . . . . . . 11  |-  ( ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  (
( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18320, 91, 75, 182fsumle 12273 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18487, 92, 76, 93, 183letrd 8989 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) ) )
18587, 76, 52, 184lediv1dd 10460 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )
18688, 77, 62, 185lesub2dd 9405 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( (
( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
18760, 80absmuld 11952 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) ) )
1886, 13logge0d 19997 . . . . . . . . . . . 12  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( log `  x
) )
18918, 188absidd 11921 . . . . . . . . . . 11  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( log `  x
) )  =  ( log `  x ) )
190189oveq2d 5890 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  ( R `  x )
)  x.  ( abs `  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
191187, 190eqtrd 2328 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( R `
 x )  x.  ( log `  x
) ) )  =  ( ( abs `  ( R `  x )
)  x.  ( log `  x ) ) )
19282, 80, 83absdivd 11953 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) ) )
193189oveq2d 5890 . . . . . . . . . 10  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( abs `  ( log `  x
) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
194192, 193eqtrd 2328 . . . . . . . . 9  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )
195191, 194oveq12d 5892 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  =  ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) ) )
19681, 84abs2difd 11955 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( R `  x
)  x.  ( log `  x ) ) )  -  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  <_  ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) ) )
197195, 196eqbrtrrd 4061 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( R `  ( x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n } 
( (Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19878, 89, 86, 186, 197letrd 8989 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  <_  ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) ) )
19978, 86, 14, 198lediv1dd 10460 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
20054recnd 8877 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  e.  CC )
2016recnd 8877 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  CC )
20214rpne0d 10411 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  =/=  0 )
203200, 201, 202absdivd 11953 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  ( abs `  x
) ) )
20414rpge0d 10410 . . . . . . . 8  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  x )
2056, 204absidd 11921 . . . . . . 7  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  x )  =  x )
206205oveq2d 5890 . . . . . 6  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  ( abs `  x ) )  =  ( ( abs `  (
( ( R `  x )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) ) )  /  x ) )
207203, 206eqtrd 2328 . . . . 5  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( ( ( ( R `  x
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( R `  ( x  /  n
) )  x.  ( sum_ m  e.  { y  e.  NN  |  y 
||  n }  (
(Λ `  m )  x.  (Λ `  ( n  /  m ) ) )  -  ( (Λ `  n
)  x.  ( log `  n ) ) ) )  /  ( log `  x ) ) )  /  x ) )  =  ( ( abs `  ( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) ) )  /  x ) )
208199, 207breqtrrd 4065 . . . 4  |-  ( (  T.  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( ( ( abs `  ( R `  x
) )  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
209208adantrr 697 . . 3  |-  ( (  T.  /\  ( x  e.  ( 1 (,) 
+oo )  /\  1  <_  x ) )  -> 
( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x )  <_  ( abs `  (
( ( ( R `
 x )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( R `  (
x  /  n ) )  x.  ( sum_ m  e.  { y  e.  NN  |  y  ||  n }  ( (Λ `  m )  x.  (Λ `  ( n  /  m
) ) )  -  ( (Λ `  n )  x.  ( log `  n
) ) ) )  /  ( log `  x
) ) )  /  x ) ) )
2102, 58, 59, 79, 209lo1le 12141 . 2  |-  (  T. 
->  ( x  e.  ( 1 (,)  +oo )  |->  ( ( ( ( abs `  ( R `
 x ) )  x.  ( log `  x
) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 ) )
211210trud 1314 1  |-  ( x  e.  ( 1 (,) 
+oo )  |->  ( ( ( ( abs `  ( R `  x )
)  x.  ( log `  x ) )  -  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( abs `  ( R `  ( x  /  n ) ) )  x.  ( ( S `
 n )  -  ( S `  ( n  -  1 ) ) ) )  /  ( log `  x ) ) )  /  x ) )  e.  <_ O
( 1 )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    T. wtru 1307    = wceq 1632    e. wcel 1696   {crab 2560    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   Fincfn 6879   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    +oocpnf 8880    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   (,)cioo 10672   ...cfz 10798   |_cfl 10940   abscabs 11735   O ( 1 )co1 11976   <_ O ( 1 )clo1 11977   sum_csu 12174    || cdivides 12547   logclog 19928  Λcvma 20345  ψcchp 20346
This theorem is referenced by:  pntrlog2bndlem4  20745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-o1 11980  df-lo1 11981  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cxp 19931  df-em 20303  df-cht 20350  df-vma 20351  df-chp 20352  df-ppi 20353  df-mu 20354
  Copyright terms: Public domain W3C validator