MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrlog2bndlem3 Structured version   Unicode version

Theorem pntrlog2bndlem3 21275
Description: Lemma for pntrlog2bnd 21280. Bound on the difference between the Selberg function and its approximation, inside a sum. (Contributed by Mario Carneiro, 31-May-2016.)
Hypotheses
Ref Expression
pntsval.1  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
pntrlog2bnd.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
pntrlog2bndlem3.1  |-  ( ph  ->  A  e.  RR+ )
pntrlog2bndlem3.2  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
Assertion
Ref Expression
pntrlog2bndlem3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
Distinct variable groups:    i, a, n, x, y, A    ph, n, x    S, n, x, y    R, n, x, y
Allowed substitution hints:    ph( y, i, a)    R( i, a)    S( i, a)

Proof of Theorem pntrlog2bndlem3
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 1re 9092 . . 3  |-  1  e.  RR
21a1i 11 . 2  |-  ( ph  ->  1  e.  RR )
3 pntrlog2bndlem3.1 . . . . 5  |-  ( ph  ->  A  e.  RR+ )
43rpred 10650 . . . 4  |-  ( ph  ->  A  e.  RR )
54adantr 453 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  A  e.  RR )
6 fzfid 11314 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1 ... ( |_ `  x ) )  e. 
Fin )
7 elfznn 11082 . . . . . . . 8  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
87adantl 454 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
98nnred 10017 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR )
10 elioore 10948 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 (,) 
+oo )  ->  x  e.  RR )
1110adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR )
12 1rp 10618 . . . . . . . . . . . . . 14  |-  1  e.  RR+
1312a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR+ )
1413rpred 10650 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  e.  RR )
15 eliooord 10972 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 (,) 
+oo )  ->  (
1  <  x  /\  x  <  +oo ) )
1615adantl 454 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
1  <  x  /\  x  <  +oo ) )
1716simpld 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <  x )
1814, 11, 17ltled 9223 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  1  <_  x )
1911, 13, 18rpgecld 10685 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  x  e.  RR+ )
2019adantr 453 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  x  e.  RR+ )
218nnrpd 10649 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
2212a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR+ )
2321, 22rpaddcld 10665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  +  1 )  e.  RR+ )
2420, 23rpdivcld 10667 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  ( n  + 
1 ) )  e.  RR+ )
25 pntrlog2bnd.r . . . . . . . . . . . 12  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
2625pntrf 21259 . . . . . . . . . . 11  |-  R : RR+
--> RR
2726ffvelrni 5871 . . . . . . . . . 10  |-  ( ( x  /  ( n  +  1 ) )  e.  RR+  ->  ( R `
 ( x  / 
( n  +  1 ) ) )  e.  RR )
2824, 27syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  RR )
2928recnd 9116 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  (
n  +  1 ) ) )  e.  CC )
3020, 21rpdivcld 10667 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
3126ffvelrni 5871 . . . . . . . . . 10  |-  ( ( x  /  n )  e.  RR+  ->  ( R `
 ( x  /  n ) )  e.  RR )
3230, 31syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  RR )
3332recnd 9116 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( R `  ( x  /  n
) )  e.  CC )
3429, 33subcld 9413 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) )  e.  CC )
3534abscld 12240 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  RR )
369, 35remulcld 9118 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  RR )
376, 36fsumrecl 12530 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  RR )
3811, 17rplogcld 20526 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( log `  x )  e.  RR+ )
3919, 38rpmulcld 10666 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR+ )
4037, 39rerpdivcld 10677 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  e.  RR )
41 ioossre 10974 . . . 4  |-  ( 1 (,)  +oo )  C_  RR
423rpcnd 10652 . . . 4  |-  ( ph  ->  A  e.  CC )
43 o1const 12415 . . . 4  |-  ( ( ( 1 (,)  +oo )  C_  RR  /\  A  e.  CC )  ->  (
x  e.  ( 1 (,)  +oo )  |->  A )  e.  O ( 1 ) )
4441, 42, 43sylancr 646 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  A )  e.  O
( 1 ) )
45 chpo1ubb 21177 . . . 4  |-  E. c  e.  RR+  A. y  e.  RR+  (ψ `  y )  <_  ( c  x.  y
)
46 pntsval.1 . . . . . 6  |-  S  =  ( a  e.  RR  |->  sum_ i  e.  ( 1 ... ( |_ `  a ) ) ( (Λ `  i )  x.  ( ( log `  i
)  +  (ψ `  ( a  /  i
) ) ) ) )
47 simpl 445 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  c  e.  RR+ )
48 simpr 449 . . . . . 6  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y ) )
4946, 25, 47, 48pntrlog2bndlem2 21274 . . . . 5  |-  ( ( c  e.  RR+  /\  A. y  e.  RR+  (ψ `  y )  <_  (
c  x.  y ) )  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
5049rexlimiva 2827 . . . 4  |-  ( E. c  e.  RR+  A. y  e.  RR+  (ψ `  y
)  <_  ( c  x.  y )  ->  (
x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
5145, 50mp1i 12 . . 3  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )  e.  O
( 1 ) )
525, 40, 44, 51o1mul2 12420 . 2  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) )  e.  O
( 1 ) )
535, 40remulcld 9118 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
5433abscld 12240 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  n ) ) )  e.  RR )
5529abscld 12240 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( R `  (
x  /  ( n  +  1 ) ) ) )  e.  RR )
5654, 55resubcld 9467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  RR )
5746pntsf 21269 . . . . . . . . 9  |-  S : RR
--> RR
5857ffvelrni 5871 . . . . . . . 8  |-  ( n  e.  RR  ->  ( S `  n )  e.  RR )
599, 58syl 16 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  RR )
60 2re 10071 . . . . . . . . 9  |-  2  e.  RR
6160a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  RR )
6221relogcld 20520 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  RR )
639, 62remulcld 9118 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( log `  n
) )  e.  RR )
6461, 63remulcld 9118 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( n  x.  ( log `  n
) ) )  e.  RR )
6559, 64resubcld 9467 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  RR )
6656, 65remulcld 9118 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
676, 66fsumrecl 12530 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  RR )
6867, 39rerpdivcld 10677 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  RR )
6968recnd 9116 . 2  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) )  e.  CC )
7069abscld 12240 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  RR )
7153recnd 9116 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  CC )
7271abscld 12240 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )  e.  RR )
7367recnd 9116 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  e.  CC )
7473abscld 12240 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
755, 37remulcld 9118 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
7666recnd 9116 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  CC )
7776abscld 12240 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  e.  RR )
786, 77fsumrecl 12530 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  e.  RR )
796, 76fsumabs 12582 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
805adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  RR )
8180, 36remulcld 9118 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  e.  RR )
8256recnd 9116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( R `  ( x  /  n
) ) )  -  ( abs `  ( R `
 ( x  / 
( n  +  1 ) ) ) ) )  e.  CC )
8382abscld 12240 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  e.  RR )
8465recnd 9116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) )  e.  CC )
8584abscld 12240 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  e.  RR )
8680, 9remulcld 9118 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  RR )
8782absge0d 12248 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( abs `  ( R `
 ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) ) )
8884absge0d 12248 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( S `  n )  -  ( 2  x.  ( n  x.  ( log `  n ) ) ) ) ) )
8933, 29abs2difabsd 12263 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  n ) )  -  ( R `
 ( x  / 
( n  +  1 ) ) ) ) ) )
9033, 29abssubd 12257 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  n
) )  -  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  =  ( abs `  ( ( R `  ( x  /  ( n  + 
1 ) ) )  -  ( R `  ( x  /  n
) ) ) ) )
9189, 90breqtrd 4238 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  <_ 
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )
9259recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( S `  n )  e.  CC )
939recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
948nnne0d 10046 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9592, 93, 94divcld 9792 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( S `  n )  /  n )  e.  CC )
96 2cn 10072 . . . . . . . . . . . . . . . . 17  |-  2  e.  CC
9796a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
9862recnd 9116 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  n )  e.  CC )
9997, 98mulcld 9110 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 2  x.  ( log `  n
) )  e.  CC )
10095, 99subcld 9413 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) )  e.  CC )
101100, 93absmuld 12258 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  ( abs `  n
) ) )
10295, 99, 93subdird 9492 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( ( ( S `
 n )  /  n )  x.  n
)  -  ( ( 2  x.  ( log `  n ) )  x.  n ) ) )
10392, 93, 94divcan1d 9793 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( S `  n
)  /  n )  x.  n )  =  ( S `  n
) )
10461recnd 9116 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  2  e.  CC )
105104, 93, 98mul32d 9278 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( ( 2  x.  ( log `  n ) )  x.  n ) )
106104, 93, 98mulassd 9113 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  n )  x.  ( log `  n
) )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
107105, 106eqtr3d 2472 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
2  x.  ( log `  n ) )  x.  n )  =  ( 2  x.  ( n  x.  ( log `  n
) ) ) )
108103, 107oveq12d 6101 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  x.  n )  -  ( ( 2  x.  ( log `  n
) )  x.  n
) )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
109102, 108eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( ( S `  n )  /  n
)  -  ( 2  x.  ( log `  n
) ) )  x.  n )  =  ( ( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )
110109fveq2d 5734 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) )  x.  n ) )  =  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )
11121rpge0d 10654 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  n )
1129, 111absidd 12227 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  n )  =  n )
113112oveq2d 6099 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  ( abs `  n ) )  =  ( ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  x.  n ) )
114101, 110, 1133eqtr3d 2478 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  =  ( ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) )  x.  n ) )
115100abscld 12240 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  e.  RR )
1168nnge1d 10044 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  <_  n )
117 elicopnf 11002 . . . . . . . . . . . . . . . 16  |-  ( 1  e.  RR  ->  (
n  e.  ( 1 [,)  +oo )  <->  ( n  e.  RR  /\  1  <_  n ) ) )
1181, 117ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( 1 [,) 
+oo )  <->  ( n  e.  RR  /\  1  <_  n ) )
1199, 116, 118sylanbrc 647 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  ( 1 [,)  +oo ) )
120 pntrlog2bndlem3.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. y  e.  ( 1 [,)  +oo )
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
121120ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A. y  e.  ( 1 [,)  +oo ) ( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A )
122 fveq2 5730 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( S `  y )  =  ( S `  n ) )
123 id 21 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  y  =  n )
124122, 123oveq12d 6101 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
( S `  y
)  /  y )  =  ( ( S `
 n )  /  n ) )
125 fveq2 5730 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  n  ->  ( log `  y )  =  ( log `  n
) )
126125oveq2d 6099 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  n  ->  (
2  x.  ( log `  y ) )  =  ( 2  x.  ( log `  n ) ) )
127124, 126oveq12d 6101 . . . . . . . . . . . . . . . . 17  |-  ( y  =  n  ->  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) )  =  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )
128127fveq2d 5734 . . . . . . . . . . . . . . . 16  |-  ( y  =  n  ->  ( abs `  ( ( ( S `  y )  /  y )  -  ( 2  x.  ( log `  y ) ) ) )  =  ( abs `  ( ( ( S `  n
)  /  n )  -  ( 2  x.  ( log `  n
) ) ) ) )
129128breq1d 4224 . . . . . . . . . . . . . . 15  |-  ( y  =  n  ->  (
( abs `  (
( ( S `  y )  /  y
)  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  <->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
)
130129rspcv 3050 . . . . . . . . . . . . . 14  |-  ( n  e.  ( 1 [,) 
+oo )  ->  ( A. y  e.  (
1 [,)  +oo ) ( abs `  ( ( ( S `  y
)  /  y )  -  ( 2  x.  ( log `  y
) ) ) )  <_  A  ->  ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  <_  A
) )
131119, 121, 130sylc 59 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( S `
 n )  /  n )  -  (
2  x.  ( log `  n ) ) ) )  <_  A )
132115, 80, 9, 111, 131lemul1ad 9952 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( ( S `  n )  /  n )  -  ( 2  x.  ( log `  n ) ) ) )  x.  n
)  <_  ( A  x.  n ) )
133114, 132eqbrtrd 4234 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) )  <_  ( A  x.  n ) )
13483, 35, 85, 86, 87, 88, 91, 133lemul12ad 9955 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) ) )  x.  ( abs `  ( ( S `  n )  -  (
2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  (
( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
13582, 84absmuld 12258 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  =  ( ( abs `  (
( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) ) )  x.  ( abs `  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) ) )
13642ad2antrr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  A  e.  CC )
13735recnd 9116 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  e.  CC )
138136, 93, 137mulassd 9113 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( A  x.  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
139136, 93mulcld 9110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  n )  e.  CC )
140139, 137mulcomd 9111 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( A  x.  n )  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  =  ( ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
141138, 140eqtr3d 2472 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( A  x.  ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  ( ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) )  x.  ( A  x.  n ) ) )
142134, 135, 1413brtr4d 4244 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
1436, 77, 81, 142fsumle 12580 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14442adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  A  e.  CC )
14536recnd 9116 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 (,)  +oo ) )  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  e.  CC )
1466, 144, 145fsummulc2 12569 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  =  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( A  x.  (
n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
147143, 146breqtrrd 4240 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  <_  ( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) ) )
14874, 78, 75, 79, 147letrd 9229 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  <_ 
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) ) )
14974, 75, 39, 148lediv1dd 10704 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  <_  ( ( A  x.  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) )
15039rpcnd 10652 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  CC )
15139rpne0d 10655 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  =/=  0 )
15273, 150, 151absdivd 12259 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( abs `  (
x  x.  ( log `  x ) ) ) ) )
15339rpred 10650 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
x  x.  ( log `  x ) )  e.  RR )
15439rpge0d 10654 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  0  <_  ( x  x.  ( log `  x ) ) )
155153, 154absidd 12227 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( x  x.  ( log `  x
) ) )  =  ( x  x.  ( log `  x ) ) )
156155oveq2d 6099 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  ( abs `  ( x  x.  ( log `  x
) ) ) )  =  ( ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) )
157152, 156eqtr2d 2471 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) ) )  /  (
x  x.  ( log `  x ) ) )  =  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  ( x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  ( n  + 
1 ) ) ) ) )  x.  (
( S `  n
)  -  ( 2  x.  ( n  x.  ( log `  n
) ) ) ) )  /  ( x  x.  ( log `  x
) ) ) ) )
15837recnd 9116 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  e.  CC )
159144, 158, 150, 151divassd 9827 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  (
( A  x.  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) ) )  / 
( x  x.  ( log `  x ) ) )  =  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
160149, 157, 1593brtr3d 4243 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( n  x.  ( abs `  ( ( R `
 ( x  / 
( n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  / 
( x  x.  ( log `  x ) ) ) ) )
16153leabsd 12219 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( n  x.  ( abs `  (
( R `  (
x  /  ( n  +  1 ) ) )  -  ( R `
 ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
16270, 53, 72, 160, 161letrd 9229 . . 3  |-  ( (
ph  /\  x  e.  ( 1 (,)  +oo ) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
163162adantrr 699 . 2  |-  ( (
ph  /\  ( x  e.  ( 1 (,)  +oo )  /\  1  <_  x
) )  ->  ( abs `  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  <_  ( abs `  ( A  x.  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( n  x.  ( abs `  ( ( R `  ( x  /  (
n  +  1 ) ) )  -  ( R `  ( x  /  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) ) ) )
1642, 52, 53, 69, 163o1le 12448 1  |-  ( ph  ->  ( x  e.  ( 1 (,)  +oo )  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( abs `  ( R `  (
x  /  n ) ) )  -  ( abs `  ( R `  ( x  /  (
n  +  1 ) ) ) ) )  x.  ( ( S `
 n )  -  ( 2  x.  (
n  x.  ( log `  n ) ) ) ) )  /  (
x  x.  ( log `  x ) ) ) )  e.  O ( 1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   class class class wbr 4214    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   1c1 8993    + caddc 8995    x. cmul 8997    +oocpnf 9119    < clt 9122    <_ cle 9123    - cmin 9293    / cdiv 9679   NNcn 10002   2c2 10051   RR+crp 10614   (,)cioo 10918   [,)cico 10920   ...cfz 11045   |_cfl 11203   abscabs 12041   O ( 1 )co1 12282   sum_csu 12481   logclog 20454  Λcvma 20876  ψcchp 20877
This theorem is referenced by:  pntrlog2bndlem4  21276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-o1 12286  df-lo1 12287  df-sum 12482  df-ef 12672  df-e 12673  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-pc 13213  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-cxp 20457  df-em 20833  df-cht 20881  df-vma 20882  df-chp 20883  df-ppi 20884
  Copyright terms: Public domain W3C validator