MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Structured version   Unicode version

Theorem pntrval 21248
Description: Define the residual of the second Chebyshev function. The goal is to have  R ( x )  e.  o ( x ), or  R ( x )  /  x  ~~> r  0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrval  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Distinct variable group:    A, a
Allowed substitution hint:    R( a)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 5720 . . 3  |-  ( a  =  A  ->  (ψ `  a )  =  (ψ `  A ) )
2 id 20 . . 3  |-  ( a  =  A  ->  a  =  A )
31, 2oveq12d 6091 . 2  |-  ( a  =  A  ->  (
(ψ `  a )  -  a )  =  ( (ψ `  A
)  -  A ) )
4 pntrval.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
5 ovex 6098 . 2  |-  ( (ψ `  A )  -  A
)  e.  _V
63, 4, 5fvmpt 5798 1  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725    e. cmpt 4258   ` cfv 5446  (class class class)co 6073    - cmin 9283   RR+crp 10604  ψcchp 20867
This theorem is referenced by:  pntrmax  21250  pntrsumo1  21251  selbergr  21254  selberg3r  21255  selberg4r  21256  pntrlog2bndlem2  21264  pntrlog2bndlem4  21266  pntrlog2bnd  21270  pntpbnd1a  21271  pntibndlem2  21277  pntlem3  21295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator