MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrval Unicode version

Theorem pntrval 21123
Description: Define the residual of the second Chebyshev function. The goal is to have  R ( x )  e.  o ( x ), or  R ( x )  /  x  ~~> r  0. (Contributed by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
Assertion
Ref Expression
pntrval  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Distinct variable group:    A, a
Allowed substitution hint:    R( a)

Proof of Theorem pntrval
StepHypRef Expression
1 fveq2 5668 . . 3  |-  ( a  =  A  ->  (ψ `  a )  =  (ψ `  A ) )
2 id 20 . . 3  |-  ( a  =  A  ->  a  =  A )
31, 2oveq12d 6038 . 2  |-  ( a  =  A  ->  (
(ψ `  a )  -  a )  =  ( (ψ `  A
)  -  A ) )
4 pntrval.r . 2  |-  R  =  ( a  e.  RR+  |->  ( (ψ `  a )  -  a ) )
5 ovex 6045 . 2  |-  ( (ψ `  A )  -  A
)  e.  _V
63, 4, 5fvmpt 5745 1  |-  ( A  e.  RR+  ->  ( R `
 A )  =  ( (ψ `  A
)  -  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717    e. cmpt 4207   ` cfv 5394  (class class class)co 6020    - cmin 9223   RR+crp 10544  ψcchp 20742
This theorem is referenced by:  pntrmax  21125  pntrsumo1  21126  selbergr  21129  selberg3r  21130  selberg4r  21131  pntrlog2bndlem2  21139  pntrlog2bndlem4  21141  pntrlog2bnd  21145  pntpbnd1a  21146  pntibndlem2  21152  pntlem3  21170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pr 4344
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-iota 5358  df-fun 5396  df-fv 5402  df-ov 6023
  Copyright terms: Public domain W3C validator