MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthg Unicode version

Theorem pockthg 12969
Description: The generalized Pocklington's theorem. If  N  -  1  =  A  x.  B where  B  <  A, then  N is prime if and only if for every prime factor  p of  A, there is an  x such that  x ^ ( N  -  1 )  =  1 (  mod 
N ) and  gcd  ( x ^ ( ( N  -  1 )  /  p )  -  1 ,  N )  =  1. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthg.5  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
Assertion
Ref Expression
pockthg  |-  ( ph  ->  N  e.  Prime )
Distinct variable groups:    x, p, N    A, p, x    ph, p, x
Allowed substitution hints:    B( x, p)

Proof of Theorem pockthg
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 pockthg.4 . . 3  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
2 pockthg.1 . . . . . . 7  |-  ( ph  ->  A  e.  NN )
3 pockthg.2 . . . . . . 7  |-  ( ph  ->  B  e.  NN )
42, 3nnmulcld 9809 . . . . . 6  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
5 nnuz 10279 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
64, 5syl6eleq 2386 . . . . 5  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
7 eluzp1p1 10269 . . . . 5  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
86, 7syl 15 . . . 4  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
9 df-2 9820 . . . . 5  |-  2  =  ( 1  +  1 )
109fveq2i 5544 . . . 4  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
118, 10syl6eleqr 2387 . . 3  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= ` 
2 ) )
121, 11eqeltrd 2370 . 2  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
13 eluzelre 10255 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  RR )
1412, 13syl 15 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
1514adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  e.  RR )
162nnred 9777 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
1716resqcld 11287 . . . . . . . 8  |-  ( ph  ->  ( A ^ 2 )  e.  RR )
1817adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  e.  RR )
19 prmnn 12777 . . . . . . . . . 10  |-  ( q  e.  Prime  ->  q  e.  NN )
2019ad2antrl 708 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN )
2120nnred 9777 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  RR )
2221resqcld 11287 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q ^ 2 )  e.  RR )
23 pockthg.3 . . . . . . . . . . 11  |-  ( ph  ->  B  <  A )
243nnred 9777 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  RR )
252nngt0d 9805 . . . . . . . . . . . 12  |-  ( ph  ->  0  <  A )
26 ltmul2 9623 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2724, 16, 16, 25, 26syl112anc 1186 . . . . . . . . . . 11  |-  ( ph  ->  ( B  <  A  <->  ( A  x.  B )  <  ( A  x.  A ) ) )
2823, 27mpbid 201 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  <  ( A  x.  A ) )
292, 2nnmulcld 9809 . . . . . . . . . . 11  |-  ( ph  ->  ( A  x.  A
)  e.  NN )
30 nnltp1le 10088 . . . . . . . . . . 11  |-  ( ( ( A  x.  B
)  e.  NN  /\  ( A  x.  A
)  e.  NN )  ->  ( ( A  x.  B )  < 
( A  x.  A
)  <->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A )
) )
314, 29, 30syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  x.  B )  <  ( A  x.  A )  <->  ( ( A  x.  B
)  +  1 )  <_  ( A  x.  A ) ) )
3228, 31mpbid 201 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  <_  ( A  x.  A ) )
332nncnd 9778 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
3433sqvald 11258 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3532, 1, 343brtr4d 4069 . . . . . . . 8  |-  ( ph  ->  N  <_  ( A ^ 2 ) )
3635adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <_  ( A ^
2 ) )
37 pockthg.5 . . . . . . . . . . . . 13  |-  ( ph  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
3837adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )
39 prmnn 12777 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  Prime  ->  p  e.  NN )
4039ad2antrl 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  NN )
4140nncnd 9778 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  CC )
4241exp1d 11256 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  =  p )
43 nnge1 9788 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  pCnt  A )  e.  NN  ->  1  <_  ( p  pCnt  A )
)
4443ad2antll 709 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  <_  ( p  pCnt  A )
)
45 simprl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  e.  Prime )
462nnzd 10132 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A  e.  ZZ )
4746ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  A  e.  ZZ )
48 1nn0 9997 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  NN0
4948a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  1  e.  NN0 )
50 pcdvdsb 12937 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  1  e. 
NN0 )  ->  (
1  <_  ( p  pCnt  A )  <->  ( p ^ 1 )  ||  A ) )
5145, 47, 49, 50syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( 1  <_  ( p  pCnt  A )  <->  ( p ^
1 )  ||  A
) )
5244, 51mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( p ^ 1 )  ||  A )
5342, 52eqbrtrrd 4061 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  p  ||  A
)
54 simpl1 958 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  ph )
5554, 2syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  A  e.  NN )
5654, 3syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  e.  NN )
5754, 23syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  B  <  A )
5854, 1syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  N  =  ( ( A  x.  B )  +  1 ) )
59 simpl2l 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  e.  Prime )
60 simpl2r 1009 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
q  ||  N )
61 simpl3l 1010 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  p  e.  Prime )
62 simpl3r 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  e.  NN )
63 simprl 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  ->  x  e.  ZZ )
64 simprrl 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( x ^
( N  -  1 ) )  mod  N
)  =  1 )
65 simprrr 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )
6655, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65pockthlem 12968 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  ( x  e.  ZZ  /\  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) )
6766expr 598 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  /\  x  e.  ZZ )  ->  ( ( ( ( x ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( x ^ (
( N  -  1 )  /  p ) )  -  1 )  gcd  N )  =  1 )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
6867rexlimdva 2680 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N )  /\  (
p  e.  Prime  /\  (
p  pCnt  A )  e.  NN ) )  -> 
( E. x  e.  ZZ  ( ( ( x ^ ( N  -  1 ) )  mod  N )  =  1  /\  ( ( ( x ^ (
( N  -  1 )  /  p ) )  -  1 )  gcd  N )  =  1 )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
69683expa 1151 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 )  ->  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
7053, 69embantd 50 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  ( p  e.  Prime  /\  ( p  pCnt  A
)  e.  NN ) )  ->  ( (
p  ||  A  ->  E. x  e.  ZZ  (
( ( x ^
( N  -  1 ) )  mod  N
)  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  - 
1 )  gcd  N
)  =  1 ) )  ->  ( p  pCnt  A )  <_  (
p  pCnt  ( q  -  1 ) ) ) )
7170expr 598 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  ->  ( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
72 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( p  e.  Prime  ->  p  e. 
Prime )
73 prmuz2 12792 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  Prime  ->  q  e.  ( ZZ>= `  2 )
)
74 uz2m1nn 10308 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  ( ZZ>= `  2
)  ->  ( q  -  1 )  e.  NN )
7573, 74syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( q  e.  Prime  ->  ( q  -  1 )  e.  NN )
7675ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  NN )
77 pccl 12918 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  (
q  -  1 )  e.  NN )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7872, 76, 77syl2anr 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  (
q  -  1 ) )  e.  NN0 )
7978nn0ge0d 10037 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  ( q  -  1 ) ) )
80 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( ( p  pCnt  A )  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) )  <->  0  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8179, 80syl5ibrcom 213 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( p  pCnt  A
)  <_  ( p  pCnt  ( q  -  1 ) ) ) )
8281a1dd 42 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  =  0  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) ) )
83 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  p  e.  Prime )
842ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  ->  A  e.  NN )
8583, 84pccld 12919 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  e.  NN0 )
86 elnn0 9983 . . . . . . . . . . . . . . 15  |-  ( ( p  pCnt  A )  e.  NN0  <->  ( ( p 
pCnt  A )  e.  NN  \/  ( p  pCnt  A
)  =  0 ) )
8785, 86sylib 188 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  pCnt  A )  e.  NN  \/  ( p  pCnt  A )  =  0 ) )
8871, 82, 87mpjaod 370 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
q  e.  Prime  /\  q  ||  N ) )  /\  p  e.  Prime )  -> 
( ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
8988ralimdva 2634 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A. p  e. 
Prime  ( p  ||  A  ->  E. x  e.  ZZ  ( ( ( x ^ ( N  - 
1 ) )  mod 
N )  =  1  /\  ( ( ( x ^ ( ( N  -  1 )  /  p ) )  -  1 )  gcd 
N )  =  1 ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  ( q  -  1 ) ) ) )
9038, 89mpd 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) )
9146adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  ZZ )
9276nnzd 10132 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( q  -  1 )  e.  ZZ )
93 pc2dvds 12947 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  ZZ )  ->  ( A  ||  ( q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9491, 92, 93syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  <->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  (
q  -  1 ) ) ) )
9590, 94mpbird 223 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  ||  ( q  - 
1 ) )
96 dvdsle 12590 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( q  -  1 )  e.  NN )  ->  ( A  ||  ( q  -  1 )  ->  A  <_  ( q  -  1 ) ) )
9791, 76, 96syl2anc 642 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  ||  (
q  -  1 )  ->  A  <_  (
q  -  1 ) ) )
9895, 97mpd 14 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <_  ( q  - 
1 ) )
992nnnn0d 10034 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  NN0 )
10099adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  NN0 )
10120nnnn0d 10034 . . . . . . . . . 10  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
q  e.  NN0 )
102 nn0ltlem1 10092 . . . . . . . . . 10  |-  ( ( A  e.  NN0  /\  q  e.  NN0 )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
103100, 101, 102syl2anc 642 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  A  <_  ( q  - 
1 ) ) )
10498, 103mpbird 223 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  <  q )
10516adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  A  e.  RR )
10699nn0ge0d 10037 . . . . . . . . . 10  |-  ( ph  ->  0  <_  A )
107106adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  A )
108101nn0ge0d 10037 . . . . . . . . 9  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
0  <_  q )
109105, 21, 107, 108lt2sqd 11295 . . . . . . . 8  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A  <  q  <->  ( A ^ 2 )  <  ( q ^
2 ) ) )
110104, 109mpbid 201 . . . . . . 7  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( A ^ 2 )  <  ( q ^ 2 ) )
11115, 18, 22, 36, 110lelttrd 8990 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  N  <  ( q ^
2 ) )
11215, 22ltnled 8982 . . . . . 6  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  -> 
( N  <  (
q ^ 2 )  <->  -.  ( q ^ 2 )  <_  N )
)
113111, 112mpbid 201 . . . . 5  |-  ( (
ph  /\  ( q  e.  Prime  /\  q  ||  N ) )  ->  -.  ( q ^ 2 )  <_  N )
114113expr 598 . . . 4  |-  ( (
ph  /\  q  e.  Prime )  ->  ( q  ||  N  ->  -.  (
q ^ 2 )  <_  N ) )
115114con2d 107 . . 3  |-  ( (
ph  /\  q  e.  Prime )  ->  ( (
q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
116115ralrimiva 2639 . 2  |-  ( ph  ->  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) )
117 isprm5 12807 . 2  |-  ( N  e.  Prime  <->  ( N  e.  ( ZZ>= `  2 )  /\  A. q  e.  Prime  ( ( q ^ 2 )  <_  N  ->  -.  q  ||  N ) ) )
11812, 116, 117sylanbrc 645 1  |-  ( ph  ->  N  e.  Prime )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246    mod cmo 10989   ^cexp 11120    || cdivides 12547    gcd cgcd 12701   Primecprime 12774    pCnt cpc 12905
This theorem is referenced by:  pockthi  12970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-dvds 12548  df-gcd 12702  df-prm 12775  df-odz 12849  df-phi 12850  df-pc 12906
  Copyright terms: Public domain W3C validator