MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pockthlem Unicode version

Theorem pockthlem 12952
Description: Lemma for pockthg 12953. (Contributed by Mario Carneiro, 2-Mar-2014.)
Hypotheses
Ref Expression
pockthg.1  |-  ( ph  ->  A  e.  NN )
pockthg.2  |-  ( ph  ->  B  e.  NN )
pockthg.3  |-  ( ph  ->  B  <  A )
pockthg.4  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
pockthlem.5  |-  ( ph  ->  P  e.  Prime )
pockthlem.6  |-  ( ph  ->  P  ||  N )
pockthlem.7  |-  ( ph  ->  Q  e.  Prime )
pockthlem.8  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
pockthlem.9  |-  ( ph  ->  C  e.  ZZ )
pockthlem.10  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
pockthlem.11  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
Assertion
Ref Expression
pockthlem  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )

Proof of Theorem pockthlem
StepHypRef Expression
1 pockthlem.7 . . . . . . 7  |-  ( ph  ->  Q  e.  Prime )
2 pockthg.1 . . . . . . 7  |-  ( ph  ->  A  e.  NN )
3 pcdvds 12916 . . . . . . 7  |-  ( ( Q  e.  Prime  /\  A  e.  NN )  ->  ( Q ^ ( Q  pCnt  A ) )  ||  A
)
41, 2, 3syl2anc 642 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  A )
52nnzd 10116 . . . . . . . 8  |-  ( ph  ->  A  e.  ZZ )
6 pockthg.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  NN )
76nnzd 10116 . . . . . . . 8  |-  ( ph  ->  B  e.  ZZ )
8 dvdsmul1 12550 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
95, 7, 8syl2anc 642 . . . . . . 7  |-  ( ph  ->  A  ||  ( A  x.  B ) )
10 pockthg.4 . . . . . . . . 9  |-  ( ph  ->  N  =  ( ( A  x.  B )  +  1 ) )
1110oveq1d 5873 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  =  ( ( ( A  x.  B
)  +  1 )  -  1 ) )
122, 6nnmulcld 9793 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  e.  NN )
1312nncnd 9762 . . . . . . . . 9  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
14 ax-1cn 8795 . . . . . . . . 9  |-  1  e.  CC
15 pncan 9057 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
1613, 14, 15sylancl 643 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  x.  B )  +  1 )  -  1 )  =  ( A  x.  B ) )
1711, 16eqtrd 2315 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  =  ( A  x.  B ) )
189, 17breqtrrd 4049 . . . . . 6  |-  ( ph  ->  A  ||  ( N  -  1 ) )
19 prmnn 12761 . . . . . . . . . 10  |-  ( Q  e.  Prime  ->  Q  e.  NN )
201, 19syl 15 . . . . . . . . 9  |-  ( ph  ->  Q  e.  NN )
21 pockthlem.8 . . . . . . . . . 10  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN )
2221nnnn0d 10018 . . . . . . . . 9  |-  ( ph  ->  ( Q  pCnt  A
)  e.  NN0 )
2320, 22nnexpcld 11266 . . . . . . . 8  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  NN )
2423nnzd 10116 . . . . . . 7  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  ZZ )
25 1z 10053 . . . . . . . . . 10  |-  1  e.  ZZ
26 nnuz 10263 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
2712, 26syl6eleq 2373 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  x.  B
)  e.  ( ZZ>= ` 
1 ) )
28 eluzp1p1 10253 . . . . . . . . . . . 12  |-  ( ( A  x.  B )  e.  ( ZZ>= `  1
)  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
2927, 28syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  x.  B )  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
3010, 29eqeltrd 2357 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )
31 eluzp1m1 10251 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
3225, 30, 31sylancr 644 . . . . . . . . 9  |-  ( ph  ->  ( N  -  1 )  e.  ( ZZ>= ` 
1 ) )
3332, 26syl6eleqr 2374 . . . . . . . 8  |-  ( ph  ->  ( N  -  1 )  e.  NN )
3433nnzd 10116 . . . . . . 7  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
35 dvdstr 12562 . . . . . . 7  |-  ( ( ( Q ^ ( Q  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  (
( ( Q ^
( Q  pCnt  A
) )  ||  A  /\  A  ||  ( N  -  1 ) )  ->  ( Q ^
( Q  pCnt  A
) )  ||  ( N  -  1 ) ) )
3624, 5, 34, 35syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( ( Q ^ ( Q  pCnt  A ) )  ||  A  /\  A  ||  ( N  -  1 ) )  ->  ( Q ^
( Q  pCnt  A
) )  ||  ( N  -  1 ) ) )
374, 18, 36mp2and 660 . . . . 5  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( N  - 
1 ) )
3823nnne0d 9790 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  =/=  0 )
39 dvdsval2 12534 . . . . . 6  |-  ( ( ( Q ^ ( Q  pCnt  A ) )  e.  ZZ  /\  ( Q ^ ( Q  pCnt  A ) )  =/=  0  /\  ( N  -  1 )  e.  ZZ )  ->  ( ( Q ^ ( Q  pCnt  A ) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
4024, 38, 34, 39syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( Q ^
( Q  pCnt  A
) )  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ ) )
4137, 40mpbid 201 . . . 4  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ )
42 pockthlem.5 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
43 prmnn 12761 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  NN )
4442, 43syl 15 . . . . . 6  |-  ( ph  ->  P  e.  NN )
45 pockthlem.9 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
4644nnzd 10116 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ZZ )
47 gcddvds 12694 . . . . . . . . . . 11  |-  ( ( C  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
4845, 46, 47syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  P ) )
4948simpld 445 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  ||  C )
5048simprd 449 . . . . . . . . . 10  |-  ( ph  ->  ( C  gcd  P
)  ||  P )
51 pockthlem.6 . . . . . . . . . 10  |-  ( ph  ->  P  ||  N )
5245, 46gcdcld 12697 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  gcd  P
)  e.  NN0 )
5352nn0zd 10115 . . . . . . . . . . 11  |-  ( ph  ->  ( C  gcd  P
)  e.  ZZ )
54 df-2 9804 . . . . . . . . . . . . . . . 16  |-  2  =  ( 1  +  1 )
5554fveq2i 5528 . . . . . . . . . . . . . . 15  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
5630, 55syl6eleqr 2374 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= ` 
2 ) )
57 eluz2b2 10290 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
5856, 57sylib 188 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  e.  NN  /\  1  <  N ) )
5958simpld 445 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
6059nnzd 10116 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  ZZ )
61 dvdstr 12562 . . . . . . . . . . 11  |-  ( ( ( C  gcd  P
)  e.  ZZ  /\  P  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( C  gcd  P )  ||  P  /\  P  ||  N )  -> 
( C  gcd  P
)  ||  N )
)
6253, 46, 60, 61syl3anc 1182 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  gcd  P )  ||  P  /\  P  ||  N
)  ->  ( C  gcd  P )  ||  N
) )
6350, 51, 62mp2and 660 . . . . . . . . 9  |-  ( ph  ->  ( C  gcd  P
)  ||  N )
6459nnne0d 9790 . . . . . . . . . . 11  |-  ( ph  ->  N  =/=  0 )
65 simpr 447 . . . . . . . . . . . 12  |-  ( ( C  =  0  /\  N  =  0 )  ->  N  =  0 )
6665necon3ai 2486 . . . . . . . . . . 11  |-  ( N  =/=  0  ->  -.  ( C  =  0  /\  N  =  0
) )
6764, 66syl 15 . . . . . . . . . 10  |-  ( ph  ->  -.  ( C  =  0  /\  N  =  0 ) )
68 dvdslegcd 12695 . . . . . . . . . 10  |-  ( ( ( ( C  gcd  P )  e.  ZZ  /\  C  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( C  =  0  /\  N  =  0
) )  ->  (
( ( C  gcd  P )  ||  C  /\  ( C  gcd  P ) 
||  N )  -> 
( C  gcd  P
)  <_  ( C  gcd  N ) ) )
6953, 45, 60, 67, 68syl31anc 1185 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  gcd  P )  ||  C  /\  ( C  gcd  P )  ||  N )  ->  ( C  gcd  P )  <_  ( C  gcd  N ) ) )
7049, 63, 69mp2and 660 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  <_  ( C  gcd  N ) )
71 pockthlem.10 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  1 )
7271oveq1d 5873 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( 1  gcd  N ) )
7333nnnn0d 10018 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  -  1 )  e.  NN0 )
74 zexpcl 11118 . . . . . . . . . . . 12  |-  ( ( C  e.  ZZ  /\  ( N  -  1
)  e.  NN0 )  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
7545, 73, 74syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  ( C ^ ( N  -  1 ) )  e.  ZZ )
76 modgcd 12715 . . . . . . . . . . 11  |-  ( ( ( C ^ ( N  -  1 ) )  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
7775, 59, 76syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  gcd  N
)  =  ( ( C ^ ( N  -  1 ) )  gcd  N ) )
78 gcdcom 12699 . . . . . . . . . . . 12  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
7925, 60, 78sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  gcd  N
)  =  ( N  gcd  1 ) )
80 gcd1 12711 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  gcd  1 )  =  1 )
8160, 80syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( N  gcd  1
)  =  1 )
8279, 81eqtrd 2315 . . . . . . . . . 10  |-  ( ph  ->  ( 1  gcd  N
)  =  1 )
8372, 77, 823eqtr3d 2323 . . . . . . . . 9  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  gcd  N
)  =  1 )
84 rpexp 12799 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  N  e.  ZZ  /\  ( N  -  1 )  e.  NN )  -> 
( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
8545, 60, 33, 84syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  gcd 
N )  =  1  <-> 
( C  gcd  N
)  =  1 ) )
8683, 85mpbid 201 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  N
)  =  1 )
8770, 86breqtrd 4047 . . . . . . 7  |-  ( ph  ->  ( C  gcd  P
)  <_  1 )
8844nnne0d 9790 . . . . . . . . . 10  |-  ( ph  ->  P  =/=  0 )
89 simpr 447 . . . . . . . . . . 11  |-  ( ( C  =  0  /\  P  =  0 )  ->  P  =  0 )
9089necon3ai 2486 . . . . . . . . . 10  |-  ( P  =/=  0  ->  -.  ( C  =  0  /\  P  =  0
) )
9188, 90syl 15 . . . . . . . . 9  |-  ( ph  ->  -.  ( C  =  0  /\  P  =  0 ) )
92 gcdn0cl 12693 . . . . . . . . 9  |-  ( ( ( C  e.  ZZ  /\  P  e.  ZZ )  /\  -.  ( C  =  0  /\  P  =  0 ) )  ->  ( C  gcd  P )  e.  NN )
9345, 46, 91, 92syl21anc 1181 . . . . . . . 8  |-  ( ph  ->  ( C  gcd  P
)  e.  NN )
94 nnle1eq1 9774 . . . . . . . 8  |-  ( ( C  gcd  P )  e.  NN  ->  (
( C  gcd  P
)  <_  1  <->  ( C  gcd  P )  =  1 ) )
9593, 94syl 15 . . . . . . 7  |-  ( ph  ->  ( ( C  gcd  P )  <_  1  <->  ( C  gcd  P )  =  1 ) )
9687, 95mpbid 201 . . . . . 6  |-  ( ph  ->  ( C  gcd  P
)  =  1 )
97 odzcl 12858 . . . . . 6  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( od Z `  P ) `  C
)  e.  NN )
9844, 45, 96, 97syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  e.  NN )
9998nnzd 10116 . . . 4  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  e.  ZZ )
10059nnred 9761 . . . . . . . . . 10  |-  ( ph  ->  N  e.  RR )
10158simprd 449 . . . . . . . . . 10  |-  ( ph  ->  1  <  N )
102 1mod 10996 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  1  <  N )  -> 
( 1  mod  N
)  =  1 )
103100, 101, 102syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( 1  mod  N
)  =  1 )
10471, 103eqtr4d 2318 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N ) )
10525a1i 10 . . . . . . . . 9  |-  ( ph  ->  1  e.  ZZ )
106 moddvds 12538 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( C ^ ( N  -  1 ) )  e.  ZZ  /\  1  e.  ZZ )  ->  (
( ( C ^
( N  -  1 ) )  mod  N
)  =  ( 1  mod  N )  <->  N  ||  (
( C ^ ( N  -  1 ) )  -  1 ) ) )
10759, 75, 105, 106syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( ( ( C ^ ( N  - 
1 ) )  mod 
N )  =  ( 1  mod  N )  <-> 
N  ||  ( ( C ^ ( N  - 
1 ) )  - 
1 ) ) )
108104, 107mpbid 201 . . . . . . 7  |-  ( ph  ->  N  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
109 peano2zm 10062 . . . . . . . . 9  |-  ( ( C ^ ( N  -  1 ) )  e.  ZZ  ->  (
( C ^ ( N  -  1 ) )  -  1 )  e.  ZZ )
11075, 109syl 15 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( N  -  1 ) )  -  1 )  e.  ZZ )
111 dvdstr 12562 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  N  e.  ZZ  /\  (
( C ^ ( N  -  1 ) )  -  1 )  e.  ZZ )  -> 
( ( P  ||  N  /\  N  ||  (
( C ^ ( N  -  1 ) )  -  1 ) )  ->  P  ||  (
( C ^ ( N  -  1 ) )  -  1 ) ) )
11246, 60, 110, 111syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( P  ||  N  /\  N  ||  (
( C ^ ( N  -  1 ) )  -  1 ) )  ->  P  ||  (
( C ^ ( N  -  1 ) )  -  1 ) ) )
11351, 108, 112mp2and 660 . . . . . 6  |-  ( ph  ->  P  ||  ( ( C ^ ( N  -  1 ) )  -  1 ) )
114 odzdvds 12860 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( N  -  1
)  e.  NN0 )  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( od Z `  P ) `  C
)  ||  ( N  -  1 ) ) )
11544, 45, 96, 73, 114syl31anc 1185 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ ( N  -  1 ) )  -  1 )  <-> 
( ( od Z `  P ) `  C
)  ||  ( N  -  1 ) ) )
116113, 115mpbid 201 . . . . 5  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  ||  ( N  -  1 ) )
11733nncnd 9762 . . . . . 6  |-  ( ph  ->  ( N  -  1 )  e.  CC )
11823nncnd 9762 . . . . . 6  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) )  e.  CC )
119117, 118, 38divcan1d 9537 . . . . 5  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  =  ( N  -  1 ) )
120116, 119breqtrrd 4049 . . . 4  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) ) )
121 nprmdvds1 12790 . . . . . 6  |-  ( P  e.  Prime  ->  -.  P  ||  1 )
12242, 121syl 15 . . . . 5  |-  ( ph  ->  -.  P  ||  1
)
12320nnzd 10116 . . . . . . . . . . . . . 14  |-  ( ph  ->  Q  e.  ZZ )
124 iddvdsexp 12552 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  ( Q  pCnt  A )  e.  NN )  ->  Q  ||  ( Q ^
( Q  pCnt  A
) ) )
125123, 21, 124syl2anc 642 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  ||  ( Q ^ ( Q  pCnt  A ) ) )
126 dvdstr 12562 . . . . . . . . . . . . . 14  |-  ( ( Q  e.  ZZ  /\  ( Q ^ ( Q 
pCnt  A ) )  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  ->  (
( Q  ||  ( Q ^ ( Q  pCnt  A ) )  /\  ( Q ^ ( Q  pCnt  A ) )  ||  ( N  -  1 ) )  ->  Q  ||  ( N  -  1 ) ) )
127123, 24, 34, 126syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( Q  ||  ( Q ^ ( Q 
pCnt  A ) )  /\  ( Q ^ ( Q 
pCnt  A ) )  ||  ( N  -  1
) )  ->  Q  ||  ( N  -  1 ) ) )
128125, 37, 127mp2and 660 . . . . . . . . . . . 12  |-  ( ph  ->  Q  ||  ( N  -  1 ) )
12920nnne0d 9790 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  =/=  0 )
130 dvdsval2 12534 . . . . . . . . . . . . 13  |-  ( ( Q  e.  ZZ  /\  Q  =/=  0  /\  ( N  -  1 )  e.  ZZ )  -> 
( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
131123, 129, 34, 130syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( Q  ||  ( N  -  1 )  <-> 
( ( N  - 
1 )  /  Q
)  e.  ZZ ) )
132128, 131mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  ZZ )
13373nn0ge0d 10021 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( N  -  1 ) )
13433nnred 9761 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  RR )
13520nnred 9761 . . . . . . . . . . . . 13  |-  ( ph  ->  Q  e.  RR )
13620nngt0d 9789 . . . . . . . . . . . . 13  |-  ( ph  ->  0  <  Q )
137 ge0div 9623 . . . . . . . . . . . . 13  |-  ( ( ( N  -  1 )  e.  RR  /\  Q  e.  RR  /\  0  <  Q )  ->  (
0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
138134, 135, 136, 137syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0  <_  ( N  -  1 )  <->  0  <_  ( ( N  -  1 )  /  Q ) ) )
139133, 138mpbid 201 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( ( N  -  1 )  /  Q ) )
140 elnn0z 10036 . . . . . . . . . . 11  |-  ( ( ( N  -  1 )  /  Q )  e.  NN0  <->  ( ( ( N  -  1 )  /  Q )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  Q
) ) )
141132, 139, 140sylanbrc 645 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  Q
)  e.  NN0 )
142 zexpcl 11118 . . . . . . . . . 10  |-  ( ( C  e.  ZZ  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
14345, 141, 142syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( C ^ (
( N  -  1 )  /  Q ) )  e.  ZZ )
144 peano2zm 10062 . . . . . . . . 9  |-  ( ( C ^ ( ( N  -  1 )  /  Q ) )  e.  ZZ  ->  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  e.  ZZ )
145143, 144syl 15 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ )
146 dvdsgcd 12722 . . . . . . . 8  |-  ( ( P  e.  ZZ  /\  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14746, 145, 60, 146syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( ( P  ||  ( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  /\  P  ||  N )  ->  P  ||  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
) ) )
14851, 147mpan2d 655 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  ->  P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N ) ) )
149 odzdvds 12860 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  /\  ( ( N  - 
1 )  /  Q
)  e.  NN0 )  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( od Z `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
15044, 45, 96, 141, 149syl31anc 1185 . . . . . . 7  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( od Z `  P ) `  C
)  ||  ( ( N  -  1 )  /  Q ) ) )
15120nncnd 9762 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  CC )
15221nnzd 10116 . . . . . . . . . . 11  |-  ( ph  ->  ( Q  pCnt  A
)  e.  ZZ )
153151, 129, 152expm1d 11255 . . . . . . . . . 10  |-  ( ph  ->  ( Q ^ (
( Q  pCnt  A
)  -  1 ) )  =  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) )
154153oveq2d 5874 . . . . . . . . 9  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( ( Q ^ ( Q 
pCnt  A ) )  /  Q ) ) )
155134, 23nndivred 9794 . . . . . . . . . . 11  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  RR )
156155recnd 8861 . . . . . . . . . 10  |-  ( ph  ->  ( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  e.  CC )
157156, 118, 151, 129divassd 9571 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( ( Q ^
( Q  pCnt  A
) )  /  Q
) ) )
158119oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( N  -  1 )  /  ( Q ^
( Q  pCnt  A
) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /  Q )  =  ( ( N  -  1 )  /  Q ) )
159154, 157, 1583eqtr2d 2321 . . . . . . . 8  |-  ( ph  ->  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( ( Q 
pCnt  A )  -  1 ) ) )  =  ( ( N  - 
1 )  /  Q
) )
160159breq2d 4035 . . . . . . 7  |-  ( ph  ->  ( ( ( od
Z `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  <->  ( ( od Z `  P ) `
 C )  ||  ( ( N  - 
1 )  /  Q
) ) )
161150, 160bitr4d 247 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( C ^ (
( N  -  1 )  /  Q ) )  -  1 )  <-> 
( ( od Z `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )
162 pockthlem.11 . . . . . . 7  |-  ( ph  ->  ( ( ( C ^ ( ( N  -  1 )  /  Q ) )  - 
1 )  gcd  N
)  =  1 )
163162breq2d 4035 . . . . . 6  |-  ( ph  ->  ( P  ||  (
( ( C ^
( ( N  - 
1 )  /  Q
) )  -  1 )  gcd  N )  <-> 
P  ||  1 ) )
164148, 161, 1633imtr3d 258 . . . . 5  |-  ( ph  ->  ( ( ( od
Z `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) )  ->  P  ||  1 ) )
165122, 164mtod 168 . . . 4  |-  ( ph  ->  -.  ( ( od
Z `  P ) `  C )  ||  (
( ( N  - 
1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) )
166 prmpwdvds 12951 . . . 4  |-  ( ( ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  e.  ZZ  /\  ( ( od Z `  P ) `  C
)  e.  ZZ )  /\  ( Q  e. 
Prime  /\  ( Q  pCnt  A )  e.  NN )  /\  ( ( ( od Z `  P
) `  C )  ||  ( ( ( N  -  1 )  / 
( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ ( Q  pCnt  A ) ) )  /\  -.  ( ( od Z `  P ) `  C
)  ||  ( (
( N  -  1 )  /  ( Q ^ ( Q  pCnt  A ) ) )  x.  ( Q ^ (
( Q  pCnt  A
)  -  1 ) ) ) ) )  ->  ( Q ^
( Q  pCnt  A
) )  ||  (
( od Z `  P ) `  C
) )
16741, 99, 1, 21, 120, 165, 166syl222anc 1198 . . 3  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( ( od
Z `  P ) `  C ) )
168 odzphi 12861 . . . . 5  |-  ( ( P  e.  NN  /\  C  e.  ZZ  /\  ( C  gcd  P )  =  1 )  ->  (
( od Z `  P ) `  C
)  ||  ( phi `  P ) )
16944, 45, 96, 168syl3anc 1182 . . . 4  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  ||  ( phi `  P ) )
170 phiprm 12845 . . . . 5  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
17142, 170syl 15 . . . 4  |-  ( ph  ->  ( phi `  P
)  =  ( P  -  1 ) )
172169, 171breqtrd 4047 . . 3  |-  ( ph  ->  ( ( od Z `  P ) `  C
)  ||  ( P  -  1 ) )
173 prmuz2 12776 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
17442, 173syl 15 . . . . . . . 8  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
175174, 55syl6eleq 2373 . . . . . . 7  |-  ( ph  ->  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )
176 eluzp1m1 10251 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  P  e.  ( ZZ>= `  ( 1  +  1 ) ) )  -> 
( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
17725, 175, 176sylancr 644 . . . . . 6  |-  ( ph  ->  ( P  -  1 )  e.  ( ZZ>= ` 
1 ) )
178177, 26syl6eleqr 2374 . . . . 5  |-  ( ph  ->  ( P  -  1 )  e.  NN )
179178nnzd 10116 . . . 4  |-  ( ph  ->  ( P  -  1 )  e.  ZZ )
180 dvdstr 12562 . . . 4  |-  ( ( ( Q ^ ( Q  pCnt  A ) )  e.  ZZ  /\  (
( od Z `  P ) `  C
)  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( ( ( Q ^ ( Q 
pCnt  A ) )  ||  ( ( od Z `  P ) `  C
)  /\  ( ( od Z `  P ) `
 C )  ||  ( P  -  1
) )  ->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
18124, 99, 179, 180syl3anc 1182 . . 3  |-  ( ph  ->  ( ( ( Q ^ ( Q  pCnt  A ) )  ||  (
( od Z `  P ) `  C
)  /\  ( ( od Z `  P ) `
 C )  ||  ( P  -  1
) )  ->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
182167, 172, 181mp2and 660 . 2  |-  ( ph  ->  ( Q ^ ( Q  pCnt  A ) ) 
||  ( P  - 
1 ) )
183 pcdvdsb 12921 . . 3  |-  ( ( Q  e.  Prime  /\  ( P  -  1 )  e.  ZZ  /\  ( Q  pCnt  A )  e. 
NN0 )  ->  (
( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
1841, 179, 22, 183syl3anc 1182 . 2  |-  ( ph  ->  ( ( Q  pCnt  A )  <_  ( Q  pCnt  ( P  -  1 ) )  <->  ( Q ^ ( Q  pCnt  A ) )  ||  ( P  -  1 ) ) )
185182, 184mpbird 223 1  |-  ( ph  ->  ( Q  pCnt  A
)  <_  ( Q  pCnt  ( P  -  1 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230    mod cmo 10973   ^cexp 11104    || cdivides 12531    gcd cgcd 12685   Primecprime 12758   od Zcodz 12831   phicphi 12832    pCnt cpc 12889
This theorem is referenced by:  pockthg  12953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759  df-odz 12833  df-phi 12834  df-pc 12890
  Copyright terms: Public domain W3C validator