Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  poeq2 Structured version   Unicode version

Theorem poeq2 4499
 Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
poeq2

Proof of Theorem poeq2
StepHypRef Expression
1 eqimss2 3393 . . 3
2 poss 4497 . . 3
31, 2syl 16 . 2
4 eqimss 3392 . . 3
5 poss 4497 . . 3
64, 5syl 16 . 2
73, 6impbid 184 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wceq 1652   wss 3312   wpo 4493 This theorem is referenced by:  posn  4938  frfi  7344  dfpo2  25370  ipo0  27609 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-ral 2702  df-in 3319  df-ss 3326  df-po 4495
 Copyright terms: Public domain W3C validator