Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pointsetN Unicode version

Theorem pointsetN 29930
Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
pointset.a  |-  A  =  ( Atoms `  K )
pointset.p  |-  P  =  ( Points `  K )
Assertion
Ref Expression
pointsetN  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Distinct variable groups:    p, a, A    K, p
Allowed substitution hints:    B( p, a)    P( p, a)    K( a)

Proof of Theorem pointsetN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( K  e.  B  ->  K  e.  _V )
2 pointset.p . . 3  |-  P  =  ( Points `  K )
3 fveq2 5525 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 pointset.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2333 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65rexeqdv 2743 . . . . 5  |-  ( k  =  K  ->  ( E. a  e.  ( Atoms `  k ) p  =  { a }  <->  E. a  e.  A  p  =  { a } ) )
76abbidv 2397 . . . 4  |-  ( k  =  K  ->  { p  |  E. a  e.  (
Atoms `  k ) p  =  { a } }  =  { p  |  E. a  e.  A  p  =  { a } } )
8 df-pointsN 29691 . . . 4  |-  Points  =  ( k  e.  _V  |->  { p  |  E. a  e.  ( Atoms `  k )
p  =  { a } } )
9 fvex 5539 . . . . . 6  |-  ( Atoms `  K )  e.  _V
104, 9eqeltri 2353 . . . . 5  |-  A  e. 
_V
1110abrexex 5763 . . . 4  |-  { p  |  E. a  e.  A  p  =  { a } }  e.  _V
127, 8, 11fvmpt 5602 . . 3  |-  ( K  e.  _V  ->  ( Points `
 K )  =  { p  |  E. a  e.  A  p  =  { a } }
)
132, 12syl5eq 2327 . 2  |-  ( K  e.  _V  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
141, 13syl 15 1  |-  ( K  e.  B  ->  P  =  { p  |  E. a  e.  A  p  =  { a } }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544   _Vcvv 2788   {csn 3640   ` cfv 5255   Atomscatm 29453   PointscpointsN 29684
This theorem is referenced by:  ispointN  29931
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-pointsN 29691
  Copyright terms: Public domain W3C validator