MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poleloe Unicode version

Theorem poleloe 5093
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4085 . 2  |-  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  _I  B ) )
2 ideqg 4851 . . 3  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
32orbi2d 682 . 2  |-  ( B  e.  V  ->  (
( A R B  \/  A  _I  B
)  <->  ( A R B  \/  A  =  B ) ) )
41, 3syl5bb 248 1  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    = wceq 1632    e. wcel 1696    u. cun 3163   class class class wbr 4039    _I cid 4320
This theorem is referenced by:  poltletr  5094  somin1  5095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712
  Copyright terms: Public domain W3C validator