MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Unicode version

Theorem poltletr 5078
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 5077 . . . . 5  |-  ( C  e.  X  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
213ad2ant3 978 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( B ( R  u.  _I  ) C  <-> 
( B R C  \/  B  =  C ) ) )
32adantl 452 . . 3  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
43anbi2d 684 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  <->  ( A R B  /\  ( B R C  \/  B  =  C ) ) ) )
5 potr 4326 . . . . 5  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
65com12 27 . . . 4  |-  ( ( A R B  /\  B R C )  -> 
( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
7 breq2 4027 . . . . . 6  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
87biimpac 472 . . . . 5  |-  ( ( A R B  /\  B  =  C )  ->  A R C )
98a1d 22 . . . 4  |-  ( ( A R B  /\  B  =  C )  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
106, 9jaodan 760 . . 3  |-  ( ( A R B  /\  ( B R C  \/  B  =  C )
)  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  A R C ) )
1110com12 27 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  ( B R C  \/  B  =  C ) )  ->  A R C ) )
124, 11sylbid 206 1  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    u. cun 3150   class class class wbr 4023    _I cid 4304    Po wpo 4312
This theorem is referenced by:  soltmin  5082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-po 4314  df-xp 4695  df-rel 4696
  Copyright terms: Public domain W3C validator