MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poltletr Structured version   Unicode version

Theorem poltletr 5261
Description: Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poltletr  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )

Proof of Theorem poltletr
StepHypRef Expression
1 poleloe 5260 . . . . 5  |-  ( C  e.  X  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
213ad2ant3 980 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( B ( R  u.  _I  ) C  <-> 
( B R C  \/  B  =  C ) ) )
32adantl 453 . . 3  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( B ( R  u.  _I  ) C  <->  ( B R C  \/  B  =  C ) ) )
43anbi2d 685 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  <->  ( A R B  /\  ( B R C  \/  B  =  C ) ) ) )
5 potr 4507 . . . . 5  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B R C )  ->  A R C ) )
65com12 29 . . . 4  |-  ( ( A R B  /\  B R C )  -> 
( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
7 breq2 4208 . . . . . 6  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
87biimpac 473 . . . . 5  |-  ( ( A R B  /\  B  =  C )  ->  A R C )
98a1d 23 . . . 4  |-  ( ( A R B  /\  B  =  C )  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A R C ) )
106, 9jaodan 761 . . 3  |-  ( ( A R B  /\  ( B R C  \/  B  =  C )
)  ->  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  A R C ) )
1110com12 29 . 2  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  ( B R C  \/  B  =  C ) )  ->  A R C ) )
124, 11sylbid 207 1  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  (
( A R B  /\  B ( R  u.  _I  ) C )  ->  A R C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    u. cun 3310   class class class wbr 4204    _I cid 4485    Po wpo 4493
This theorem is referenced by:  soltmin  5265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-id 4490  df-po 4495  df-xp 4876  df-rel 4877
  Copyright terms: Public domain W3C validator