Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polvalN Structured version   Unicode version

Theorem polvalN 30764
Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
polfval.o  |-  ._|_  =  ( oc `  K )
polfval.a  |-  A  =  ( Atoms `  K )
polfval.m  |-  M  =  ( pmap `  K
)
polfval.p  |-  P  =  ( _|_ P `  K )
Assertion
Ref Expression
polvalN  |-  ( ( K  e.  B  /\  X  C_  A )  -> 
( P `  X
)  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
Distinct variable groups:    K, p    X, p
Allowed substitution hints:    A( p)    B( p)    P( p)    M( p)    ._|_ (
p)

Proof of Theorem polvalN
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 polfval.a . . . 4  |-  A  =  ( Atoms `  K )
2 fvex 5744 . . . 4  |-  ( Atoms `  K )  e.  _V
31, 2eqeltri 2508 . . 3  |-  A  e. 
_V
43elpw2 4366 . 2  |-  ( X  e.  ~P A  <->  X  C_  A
)
5 polfval.o . . . . 5  |-  ._|_  =  ( oc `  K )
6 polfval.m . . . . 5  |-  M  =  ( pmap `  K
)
7 polfval.p . . . . 5  |-  P  =  ( _|_ P `  K )
85, 1, 6, 7polfvalN 30763 . . . 4  |-  ( K  e.  B  ->  P  =  ( m  e. 
~P A  |->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p ) ) ) ) )
98fveq1d 5732 . . 3  |-  ( K  e.  B  ->  ( P `  X )  =  ( ( m  e.  ~P A  |->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p
) ) ) ) `
 X ) )
10 iineq1 4109 . . . . 5  |-  ( m  =  X  ->  |^|_ p  e.  m  ( M `  (  ._|_  `  p
) )  =  |^|_ p  e.  X  ( M `
 (  ._|_  `  p
) ) )
1110ineq2d 3544 . . . 4  |-  ( m  =  X  ->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p ) ) )  =  ( A  i^i  |^|_
p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
12 eqid 2438 . . . 4  |-  ( m  e.  ~P A  |->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p
) ) ) )  =  ( m  e. 
~P A  |->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p ) ) ) )
133inex1 4346 . . . 4  |-  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) )  e.  _V
1411, 12, 13fvmpt 5808 . . 3  |-  ( X  e.  ~P A  -> 
( ( m  e. 
~P A  |->  ( A  i^i  |^|_ p  e.  m  ( M `  (  ._|_  `  p ) ) ) ) `  X )  =  ( A  i^i  |^|_
p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
159, 14sylan9eq 2490 . 2  |-  ( ( K  e.  B  /\  X  e.  ~P A
)  ->  ( P `  X )  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p
) ) ) )
164, 15sylan2br 464 1  |-  ( ( K  e.  B  /\  X  C_  A )  -> 
( P `  X
)  =  ( A  i^i  |^|_ p  e.  X  ( M `  (  ._|_  `  p ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   |^|_ciin 4096    e. cmpt 4268   ` cfv 5456   occoc 13539   Atomscatm 30123   pmapcpmap 30356   _|_ PcpolN 30761
This theorem is referenced by:  polval2N  30765  pol0N  30768  polcon3N  30776  polatN  30790
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-polarityN 30762
  Copyright terms: Public domain W3C validator