Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml6N Unicode version

Theorem poml6N 30144
Description: Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml6.c  |-  C  =  ( PSubCl `  K )
poml6.p  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
poml6N  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  ( (  ._|_  `  ( (  ._|_  `  X
)  i^i  Y )
)  i^i  Y )  =  X )

Proof of Theorem poml6N
StepHypRef Expression
1 simpl1 958 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  K  e.  HL )
2 simpl2 959 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  X  e.  C
)
3 eqid 2283 . . . . 5  |-  ( Atoms `  K )  =  (
Atoms `  K )
4 poml6.c . . . . 5  |-  C  =  ( PSubCl `  K )
53, 4psubclssatN 30130 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  X  C_  ( Atoms `  K ) )
61, 2, 5syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  X  C_  ( Atoms `  K ) )
7 simpl3 960 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  Y  e.  C
)
83, 4psubclssatN 30130 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  Y  C_  ( Atoms `  K ) )
91, 7, 8syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  Y  C_  ( Atoms `  K ) )
10 simpr 447 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  X  C_  Y
)
11 poml6.p . . . . 5  |-  ._|_  =  ( _|_ P `  K
)
1211, 4psubcli2N 30128 . . . 4  |-  ( ( K  e.  HL  /\  Y  e.  C )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
131, 7, 12syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
143, 11poml4N 30142 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  ( Atoms `  K
)  /\  Y  C_  ( Atoms `  K ) )  ->  ( ( X 
C_  Y  /\  (  ._|_  `  (  ._|_  `  Y
) )  =  Y )  ->  ( (  ._|_  `  ( (  ._|_  `  X )  i^i  Y
) )  i^i  Y
)  =  (  ._|_  `  (  ._|_  `  X ) ) ) )
1514imp 418 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  ( Atoms `  K )  /\  Y  C_  ( Atoms `  K )
)  /\  ( X  C_  Y  /\  (  ._|_  `  (  ._|_  `  Y ) )  =  Y ) )  ->  ( (  ._|_  `  ( (  ._|_  `  X )  i^i  Y
) )  i^i  Y
)  =  (  ._|_  `  (  ._|_  `  X ) ) )
161, 6, 9, 10, 13, 15syl32anc 1190 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  ( (  ._|_  `  ( (  ._|_  `  X
)  i^i  Y )
)  i^i  Y )  =  (  ._|_  `  (  ._|_  `  X ) ) )
1711, 4psubcli2N 30128 . . 3  |-  ( ( K  e.  HL  /\  X  e.  C )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
181, 2, 17syl2anc 642 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
1916, 18eqtrd 2315 1  |-  ( ( ( K  e.  HL  /\  X  e.  C  /\  Y  e.  C )  /\  X  C_  Y )  ->  ( (  ._|_  `  ( (  ._|_  `  X
)  i^i  Y )
)  i^i  Y )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   ` cfv 5255   Atomscatm 29453   HLchlt 29540   _|_ PcpolN 30091   PSubClcpscN 30123
This theorem is referenced by:  osumcllem9N  30153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-pmap 29693  df-polarityN 30092  df-psubclN 30124
  Copyright terms: Public domain W3C validator