MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posi Structured version   Unicode version

Theorem posi 14412
Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
posi.b  |-  B  =  ( Base `  K
)
posi.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
posi  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )

Proof of Theorem posi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posi.b . . . 4  |-  B  =  ( Base `  K
)
2 posi.l . . . 4  |-  .<_  =  ( le `  K )
31, 2ispos 14409 . . 3  |-  ( K  e.  Poset 
<->  ( K  e.  _V  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) ) )
43simprbi 452 . 2  |-  ( K  e.  Poset  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) ) )
5 breq1 4218 . . . . 5  |-  ( x  =  X  ->  (
x  .<_  x  <->  X  .<_  x ) )
6 breq2 4219 . . . . 5  |-  ( x  =  X  ->  ( X  .<_  x  <->  X  .<_  X ) )
75, 6bitrd 246 . . . 4  |-  ( x  =  X  ->  (
x  .<_  x  <->  X  .<_  X ) )
8 breq1 4218 . . . . . 6  |-  ( x  =  X  ->  (
x  .<_  y  <->  X  .<_  y ) )
9 breq2 4219 . . . . . 6  |-  ( x  =  X  ->  (
y  .<_  x  <->  y  .<_  X ) )
108, 9anbi12d 693 . . . . 5  |-  ( x  =  X  ->  (
( x  .<_  y  /\  y  .<_  x )  <->  ( X  .<_  y  /\  y  .<_  X ) ) )
11 eqeq1 2444 . . . . 5  |-  ( x  =  X  ->  (
x  =  y  <->  X  =  y ) )
1210, 11imbi12d 313 . . . 4  |-  ( x  =  X  ->  (
( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  <->  ( ( X 
.<_  y  /\  y  .<_  X )  ->  X  =  y ) ) )
138anbi1d 687 . . . . 5  |-  ( x  =  X  ->  (
( x  .<_  y  /\  y  .<_  z )  <->  ( X  .<_  y  /\  y  .<_  z ) ) )
14 breq1 4218 . . . . 5  |-  ( x  =  X  ->  (
x  .<_  z  <->  X  .<_  z ) )
1513, 14imbi12d 313 . . . 4  |-  ( x  =  X  ->  (
( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z )  <-> 
( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z ) ) )
167, 12, 153anbi123d 1255 . . 3  |-  ( x  =  X  ->  (
( x  .<_  x  /\  ( ( x  .<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )  <-> 
( X  .<_  X  /\  ( ( X  .<_  y  /\  y  .<_  X )  ->  X  =  y )  /\  ( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z ) ) ) )
17 breq2 4219 . . . . . 6  |-  ( y  =  Y  ->  ( X  .<_  y  <->  X  .<_  Y ) )
18 breq1 4218 . . . . . 6  |-  ( y  =  Y  ->  (
y  .<_  X  <->  Y  .<_  X ) )
1917, 18anbi12d 693 . . . . 5  |-  ( y  =  Y  ->  (
( X  .<_  y  /\  y  .<_  X )  <->  ( X  .<_  Y  /\  Y  .<_  X ) ) )
20 eqeq2 2447 . . . . 5  |-  ( y  =  Y  ->  ( X  =  y  <->  X  =  Y ) )
2119, 20imbi12d 313 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .<_  y  /\  y  .<_  X )  ->  X  =  y )  <->  ( ( X 
.<_  Y  /\  Y  .<_  X )  ->  X  =  Y ) ) )
22 breq1 4218 . . . . . 6  |-  ( y  =  Y  ->  (
y  .<_  z  <->  Y  .<_  z ) )
2317, 22anbi12d 693 . . . . 5  |-  ( y  =  Y  ->  (
( X  .<_  y  /\  y  .<_  z )  <->  ( X  .<_  Y  /\  Y  .<_  z ) ) )
2423imbi1d 310 . . . 4  |-  ( y  =  Y  ->  (
( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z )  <-> 
( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) ) )
2521, 243anbi23d 1258 . . 3  |-  ( y  =  Y  ->  (
( X  .<_  X  /\  ( ( X  .<_  y  /\  y  .<_  X )  ->  X  =  y )  /\  ( ( X  .<_  y  /\  y  .<_  z )  ->  X  .<_  z ) )  <-> 
( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) ) ) )
26 breq2 4219 . . . . . 6  |-  ( z  =  Z  ->  ( Y  .<_  z  <->  Y  .<_  Z ) )
2726anbi2d 686 . . . . 5  |-  ( z  =  Z  ->  (
( X  .<_  Y  /\  Y  .<_  z )  <->  ( X  .<_  Y  /\  Y  .<_  Z ) ) )
28 breq2 4219 . . . . 5  |-  ( z  =  Z  ->  ( X  .<_  z  <->  X  .<_  Z ) )
2927, 28imbi12d 313 . . . 4  |-  ( z  =  Z  ->  (
( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z )  <-> 
( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
30293anbi3d 1261 . . 3  |-  ( z  =  Z  ->  (
( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  z )  ->  X  .<_  z ) )  <-> 
( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) ) )
3116, 25, 30rspc3v 3063 . 2  |-  ( ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  .<_  x  /\  ( ( x 
.<_  y  /\  y  .<_  x )  ->  x  =  y )  /\  ( ( x  .<_  y  /\  y  .<_  z )  ->  x  .<_  z ) )  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) ) )
324, 31mpan9 457 1  |-  ( ( K  e.  Poset  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .<_  X  /\  ( ( X  .<_  Y  /\  Y  .<_  X )  ->  X  =  Y )  /\  ( ( X  .<_  Y  /\  Y  .<_  Z )  ->  X  .<_  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   class class class wbr 4215   ` cfv 5457   Basecbs 13474   lecple 13541   Posetcpo 14402
This theorem is referenced by:  posref  14413  posasymb  14414  postr  14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4341
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465  df-poset 14408
  Copyright terms: Public domain W3C validator