MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubd Unicode version

Theorem poslubd 14251
Description: Properties which determine a least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubd.l  |-  .<_  =  ( le `  K )
poslubd.b  |-  B  =  ( Base `  K
)
poslubd.u  |-  U  =  ( lub `  K
)
poslubd.k  |-  ( ph  ->  K  e.  Poset )
poslubd.s  |-  ( ph  ->  S  C_  B )
poslubd.t  |-  ( ph  ->  T  e.  B )
poslubd.ub  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
poslubd.le  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
Assertion
Ref Expression
poslubd  |-  ( ph  ->  ( U `  S
)  =  T )
Distinct variable groups:    x,  .<_ , y   
x, B, y    x, K, y    x, S, y   
x, U, y    x, T, y    ph, x, y

Proof of Theorem poslubd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 poslubd.k . . 3  |-  ( ph  ->  K  e.  Poset )
2 poslubd.s . . 3  |-  ( ph  ->  S  C_  B )
3 poslubd.b . . . 4  |-  B  =  ( Base `  K
)
4 poslubd.l . . . 4  |-  .<_  =  ( le `  K )
5 poslubd.u . . . 4  |-  U  =  ( lub `  K
)
63, 4, 5lubval 14113 . . 3  |-  ( ( K  e.  Poset  /\  S  C_  B )  ->  ( U `  S )  =  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
71, 2, 6syl2anc 642 . 2  |-  ( ph  ->  ( U `  S
)  =  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
8 poslubd.ub . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
98ralrimiva 2626 . . . 4  |-  ( ph  ->  A. x  e.  S  x  .<_  T )
10 poslubd.le . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
11103expia 1153 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )
1211ralrimiva 2626 . . . 4  |-  ( ph  ->  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )
139, 12jca 518 . . 3  |-  ( ph  ->  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
14 poslubd.t . . . 4  |-  ( ph  ->  T  e.  B )
15 breq2 4027 . . . . . . . . 9  |-  ( z  =  T  ->  (
x  .<_  z  <->  x  .<_  T ) )
1615ralbidv 2563 . . . . . . . 8  |-  ( z  =  T  ->  ( A. x  e.  S  x  .<_  z  <->  A. x  e.  S  x  .<_  T ) )
17 breq1 4026 . . . . . . . . . 10  |-  ( z  =  T  ->  (
z  .<_  y  <->  T  .<_  y ) )
1817imbi2d 307 . . . . . . . . 9  |-  ( z  =  T  ->  (
( A. x  e.  S  x  .<_  y  -> 
z  .<_  y )  <->  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
1918ralbidv 2563 . . . . . . . 8  |-  ( z  =  T  ->  ( A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y )  <->  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
2016, 19anbi12d 691 . . . . . . 7  |-  ( z  =  T  ->  (
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  <->  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) ) )
2120rspcev 2884 . . . . . 6  |-  ( ( T  e.  B  /\  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )  ->  E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
2214, 13, 21syl2anc 642 . . . . 5  |-  ( ph  ->  E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
234, 3poslubmo 14250 . . . . . 6  |-  ( ( K  e.  Poset  /\  S  C_  B )  ->  E* z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
241, 2, 23syl2anc 642 . . . . 5  |-  ( ph  ->  E* z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
25 reu5 2753 . . . . 5  |-  ( E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  <->  ( E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  /\  E* z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
2622, 24, 25sylanbrc 645 . . . 4  |-  ( ph  ->  E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
2720riota2 6327 . . . 4  |-  ( ( T  e.  B  /\  E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  ->  ( ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )  <->  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T ) )
2814, 26, 27syl2anc 642 . . 3  |-  ( ph  ->  ( ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )  <->  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T ) )
2913, 28mpbid 201 . 2  |-  ( ph  ->  ( iota_ z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T )
307, 29eqtrd 2315 1  |-  ( ph  ->  ( U `  S
)  =  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   E!wreu 2545   E*wrmo 2546    C_ wss 3152   class class class wbr 4023   ` cfv 5255   iota_crio 6297   Basecbs 13148   lecple 13215   Posetcpo 14074   lubclub 14076
This theorem is referenced by:  poslubdg  14252
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 6304  df-poset 14080  df-lub 14108
  Copyright terms: Public domain W3C validator