MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  poslubd Unicode version

Theorem poslubd 14267
Description: Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.)
Hypotheses
Ref Expression
poslubd.l  |-  .<_  =  ( le `  K )
poslubd.b  |-  B  =  ( Base `  K
)
poslubd.u  |-  U  =  ( lub `  K
)
poslubd.k  |-  ( ph  ->  K  e.  Poset )
poslubd.s  |-  ( ph  ->  S  C_  B )
poslubd.t  |-  ( ph  ->  T  e.  B )
poslubd.ub  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
poslubd.le  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
Assertion
Ref Expression
poslubd  |-  ( ph  ->  ( U `  S
)  =  T )
Distinct variable groups:    x,  .<_ , y   
x, B, y    x, K, y    x, S, y   
x, U, y    x, T, y    ph, x, y

Proof of Theorem poslubd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 poslubd.k . . 3  |-  ( ph  ->  K  e.  Poset )
2 poslubd.s . . 3  |-  ( ph  ->  S  C_  B )
3 poslubd.b . . . 4  |-  B  =  ( Base `  K
)
4 poslubd.l . . . 4  |-  .<_  =  ( le `  K )
5 poslubd.u . . . 4  |-  U  =  ( lub `  K
)
63, 4, 5lubval 14129 . . 3  |-  ( ( K  e.  Poset  /\  S  C_  B )  ->  ( U `  S )  =  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
71, 2, 6syl2anc 642 . 2  |-  ( ph  ->  ( U `  S
)  =  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
8 poslubd.ub . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  x  .<_  T )
98ralrimiva 2639 . . . 4  |-  ( ph  ->  A. x  e.  S  x  .<_  T )
10 poslubd.le . . . . . 6  |-  ( (
ph  /\  y  e.  B  /\  A. x  e.  S  x  .<_  y )  ->  T  .<_  y )
11103expia 1153 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )
1211ralrimiva 2639 . . . 4  |-  ( ph  ->  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )
139, 12jca 518 . . 3  |-  ( ph  ->  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
14 poslubd.t . . . 4  |-  ( ph  ->  T  e.  B )
15 breq2 4043 . . . . . . . . 9  |-  ( z  =  T  ->  (
x  .<_  z  <->  x  .<_  T ) )
1615ralbidv 2576 . . . . . . . 8  |-  ( z  =  T  ->  ( A. x  e.  S  x  .<_  z  <->  A. x  e.  S  x  .<_  T ) )
17 breq1 4042 . . . . . . . . . 10  |-  ( z  =  T  ->  (
z  .<_  y  <->  T  .<_  y ) )
1817imbi2d 307 . . . . . . . . 9  |-  ( z  =  T  ->  (
( A. x  e.  S  x  .<_  y  -> 
z  .<_  y )  <->  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
1918ralbidv 2576 . . . . . . . 8  |-  ( z  =  T  ->  ( A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y )  <->  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )
2016, 19anbi12d 691 . . . . . . 7  |-  ( z  =  T  ->  (
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  <->  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) ) )
2120rspcev 2897 . . . . . 6  |-  ( ( T  e.  B  /\  ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) ) )  ->  E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
2214, 13, 21syl2anc 642 . . . . 5  |-  ( ph  ->  E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
234, 3poslubmo 14266 . . . . . 6  |-  ( ( K  e.  Poset  /\  S  C_  B )  ->  E* z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
241, 2, 23syl2anc 642 . . . . 5  |-  ( ph  ->  E* z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
25 reu5 2766 . . . . 5  |-  ( E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  <->  ( E. z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) )  /\  E* z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) ) )
2622, 24, 25sylanbrc 645 . . . 4  |-  ( ph  ->  E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )
2720riota2 6343 . . . 4  |-  ( ( T  e.  B  /\  E! z  e.  B  ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  ->  ( ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )  <->  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T ) )
2814, 26, 27syl2anc 642 . . 3  |-  ( ph  ->  ( ( A. x  e.  S  x  .<_  T  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  T  .<_  y ) )  <->  ( iota_ z  e.  B ( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T ) )
2913, 28mpbid 201 . 2  |-  ( ph  ->  ( iota_ z  e.  B
( A. x  e.  S  x  .<_  z  /\  A. y  e.  B  ( A. x  e.  S  x  .<_  y  ->  z  .<_  y ) ) )  =  T )
307, 29eqtrd 2328 1  |-  ( ph  ->  ( U `  S
)  =  T )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   E!wreu 2558   E*wrmo 2559    C_ wss 3165   class class class wbr 4039   ` cfv 5271   iota_crio 6313   Basecbs 13164   lecple 13231   Posetcpo 14090   lubclub 14092
This theorem is referenced by:  poslubdg  14268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 6320  df-poset 14096  df-lub 14124
  Copyright terms: Public domain W3C validator