MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  potr Unicode version

Theorem potr 4326
Description: A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
potr  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )

Proof of Theorem potr
StepHypRef Expression
1 pocl 4321 . . 3  |-  ( R  Po  A  ->  (
( B  e.  A  /\  C  e.  A  /\  D  e.  A
)  ->  ( -.  B R B  /\  (
( B R C  /\  C R D )  ->  B R D ) ) ) )
21imp 418 . 2  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) )
32simprd 449 1  |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  (
( B R C  /\  C R D )  ->  B R D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684   class class class wbr 4023    Po wpo 4312
This theorem is referenced by:  po2nr  4327  po3nr  4328  pofun  4330  sotr  4336  poltletr  5078  poxp  6227  frfi  7102  wemaplem2  7262  sornom  7903  zorn2lem7  8129  pospo  14107  predpo  24184  poseq  24253  seqpo  26457
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-po 4314
  Copyright terms: Public domain W3C validator