Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodcnveq Structured version   Unicode version

Theorem pprodcnveq 25720
Description: A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
pprodcnveq  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )

Proof of Theorem pprodcnveq
StepHypRef Expression
1 dfpprod2 25719 . 2  |- pprod ( R ,  S )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
2 dfpprod2 25719 . . . 4  |- pprod ( `' R ,  `' S
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
32cnveqi 5039 . . 3  |-  `'pprod ( `' R ,  `' S
)  =  `' ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
4 cnvin 5271 . . 3  |-  `' ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )  =  ( `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
5 cnvco1 25375 . . . . 5  |-  `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  o.  ( 1st  |`  ( _V  X.  _V ) ) )
6 cnvco1 25375 . . . . . 6  |-  `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R
)
76coeq1i 5024 . . . . 5  |-  ( `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R )  o.  ( 1st  |`  ( _V  X.  _V ) ) )
8 coass 5380 . . . . 5  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R )  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )
95, 7, 83eqtri 2459 . . . 4  |-  `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )
10 cnvco1 25375 . . . . 5  |-  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )
11 cnvco1 25375 . . . . . 6  |-  `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S
)
1211coeq1i 5024 . . . . 5  |-  ( `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )
13 coass 5380 . . . . 5  |-  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
1410, 12, 133eqtri 2459 . . . 4  |-  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
159, 14ineq12i 3532 . . 3  |-  ( `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
163, 4, 153eqtri 2459 . 2  |-  `'pprod ( `' R ,  `' S
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
171, 16eqtr4i 2458 1  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2948    i^i cin 3311    X. cxp 4868   `'ccnv 4869    |` cres 4872    o. ccom 4874   1stc1st 6339   2ndc2nd 6340  pprodcpprod 25667
This theorem is referenced by:  brpprod3b  25724
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-txp 25690  df-pprod 25691
  Copyright terms: Public domain W3C validator