Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodcnveq Unicode version

Theorem pprodcnveq 24423
Description: A converse law for parallel product. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
pprodcnveq  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )

Proof of Theorem pprodcnveq
StepHypRef Expression
1 dfpprod2 24422 . 2  |- pprod ( R ,  S )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
2 dfpprod2 24422 . . . 4  |- pprod ( `' R ,  `' S
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
32cnveqi 4856 . . 3  |-  `'pprod ( `' R ,  `' S
)  =  `' ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
4 cnvin 5088 . . 3  |-  `' ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )  =  ( `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
5 cnvco1 24117 . . . . 5  |-  `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  o.  ( 1st  |`  ( _V  X.  _V ) ) )
6 cnvco1 24117 . . . . . 6  |-  `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R
)
76coeq1i 4843 . . . . 5  |-  ( `' ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) )  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R )  o.  ( 1st  |`  ( _V  X.  _V ) ) )
8 coass 5191 . . . . 5  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  R )  o.  ( 1st  |`  ( _V  X.  _V ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )
95, 7, 83eqtri 2307 . . . 4  |-  `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )
10 cnvco1 24117 . . . . 5  |-  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )
11 cnvco1 24117 . . . . . 6  |-  `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S
)
1211coeq1i 4843 . . . . 5  |-  ( `' ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )
13 coass 5191 . . . . 5  |-  ( ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  S )  o.  ( 2nd  |`  ( _V  X.  _V ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
1410, 12, 133eqtri 2307 . . . 4  |-  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )  =  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) )
159, 14ineq12i 3368 . . 3  |-  ( `' ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( `' R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  `' ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( `' S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
163, 4, 153eqtri 2307 . 2  |-  `'pprod ( `' R ,  `' S
)  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  ( R  o.  ( 1st  |`  ( _V  X.  _V ) ) ) )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  ( S  o.  ( 2nd  |`  ( _V  X.  _V ) ) ) ) )
171, 16eqtr4i 2306 1  |- pprod ( R ,  S )  =  `'pprod ( `' R ,  `' S )
Colors of variables: wff set class
Syntax hints:    = wceq 1623   _Vcvv 2788    i^i cin 3151    X. cxp 4687   `'ccnv 4688    |` cres 4691    o. ccom 4693   1stc1st 6120   2ndc2nd 6121  pprodcpprod 24374
This theorem is referenced by:  brpprod3b  24427
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-txp 24395  df-pprod 24396
  Copyright terms: Public domain W3C validator