MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2nelem Unicode version

Theorem pr2nelem 7650
Description: Lemma for pr2ne 7651. (Contributed by FL, 17-Aug-2008.)
Assertion
Ref Expression
pr2nelem  |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )

Proof of Theorem pr2nelem
StepHypRef Expression
1 disjsn2 3707 . . 3  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
2 ensn1g 6942 . . . . 5  |-  ( A  e.  C  ->  { A }  ~~  1o )
3 ensn1g 6942 . . . . 5  |-  ( B  e.  D  ->  { B }  ~~  1o )
4 pm54.43 7649 . . . . . . 7  |-  ( ( { A }  ~~  1o  /\  { B }  ~~  1o )  ->  (
( { A }  i^i  { B } )  =  (/)  <->  ( { A }  u.  { B } )  ~~  2o ) )
5 df-pr 3660 . . . . . . . 8  |-  { A ,  B }  =  ( { A }  u.  { B } )
65breq1i 4046 . . . . . . 7  |-  ( { A ,  B }  ~~  2o  <->  ( { A }  u.  { B } )  ~~  2o )
74, 6syl6bbr 254 . . . . . 6  |-  ( ( { A }  ~~  1o  /\  { B }  ~~  1o )  ->  (
( { A }  i^i  { B } )  =  (/)  <->  { A ,  B }  ~~  2o ) )
87biimpd 198 . . . . 5  |-  ( ( { A }  ~~  1o  /\  { B }  ~~  1o )  ->  (
( { A }  i^i  { B } )  =  (/)  ->  { A ,  B }  ~~  2o ) )
92, 3, 8syl2an 463 . . . 4  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( { A }  i^i  { B }
)  =  (/)  ->  { A ,  B }  ~~  2o ) )
109ex 423 . . 3  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( ( { A }  i^i  { B } )  =  (/)  ->  { A ,  B }  ~~  2o ) ) )
111, 10syl7 63 . 2  |-  ( A  e.  C  ->  ( B  e.  D  ->  ( A  =/=  B  ->  { A ,  B }  ~~  2o ) ) )
12113imp 1145 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  A  =/=  B )  ->  { A ,  B }  ~~  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    u. cun 3163    i^i cin 3164   (/)c0 3468   {csn 3653   {cpr 3654   class class class wbr 4039   1oc1o 6488   2oc2o 6489    ~~ cen 6876
This theorem is referenced by:  pr2ne  7651  en2eqpr  7653  en2top  16739  hmphindis  17504  en2eleq  27484  pmtrprfv  27499  symggen  27514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1o 6495  df-2o 6496  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882
  Copyright terms: Public domain W3C validator