MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prcdnq Unicode version

Theorem prcdnq 8633
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prcdnq  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)

Proof of Theorem prcdnq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 8566 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2 relxp 4810 . . . . . . 7  |-  Rel  ( Q.  X.  Q. )
3 relss 4791 . . . . . . 7  |-  (  <Q  C_  ( Q.  X.  Q. )  ->  ( Rel  ( Q.  X.  Q. )  ->  Rel  <Q  ) )
41, 2, 3mp2 17 . . . . . 6  |-  Rel  <Q
54brrelexi 4745 . . . . 5  |-  ( C 
<Q  B  ->  C  e. 
_V )
6 eleq1 2356 . . . . . . . . 9  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
76anbi2d 684 . . . . . . . 8  |-  ( x  =  B  ->  (
( A  e.  P.  /\  x  e.  A )  <-> 
( A  e.  P.  /\  B  e.  A ) ) )
8 breq2 4043 . . . . . . . 8  |-  ( x  =  B  ->  (
y  <Q  x  <->  y  <Q  B ) )
97, 8anbi12d 691 . . . . . . 7  |-  ( x  =  B  ->  (
( ( A  e. 
P.  /\  x  e.  A )  /\  y  <Q  x )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B ) ) )
109imbi1d 308 . . . . . 6  |-  ( x  =  B  ->  (
( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A
) ) )
11 breq1 4042 . . . . . . . 8  |-  ( y  =  C  ->  (
y  <Q  B  <->  C  <Q  B ) )
1211anbi2d 684 . . . . . . 7  |-  ( y  =  C  ->  (
( ( A  e. 
P.  /\  B  e.  A )  /\  y  <Q  B )  <->  ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B ) ) )
13 eleq1 2356 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  A  <->  C  e.  A ) )
1412, 13imbi12d 311 . . . . . 6  |-  ( y  =  C  ->  (
( ( ( A  e.  P.  /\  B  e.  A )  /\  y  <Q  B )  ->  y  e.  A )  <->  ( (
( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) ) )
15 elnpi 8628 . . . . . . . . . . 11  |-  ( A  e.  P.  <->  ( ( A  e.  _V  /\  (/)  C.  A  /\  A  C.  Q. )  /\  A. x  e.  A  ( A. y ( y 
<Q  x  ->  y  e.  A )  /\  E. y  e.  A  x  <Q  y ) ) )
1615simprbi 450 . . . . . . . . . 10  |-  ( A  e.  P.  ->  A. x  e.  A  ( A. y ( y  <Q  x  ->  y  e.  A
)  /\  E. y  e.  A  x  <Q  y ) )
1716r19.21bi 2654 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( A. y ( y  <Q  x  ->  y  e.  A )  /\  E. y  e.  A  x 
<Q  y ) )
1817simpld 445 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  A. y ( y 
<Q  x  ->  y  e.  A ) )
191819.21bi 1806 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  A )  ->  ( y  <Q  x  ->  y  e.  A ) )
2019imp 418 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  A )  /\  y  <Q  x
)  ->  y  e.  A )
2110, 14, 20vtocl2g 2860 . . . . 5  |-  ( ( B  e.  A  /\  C  e.  _V )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
225, 21sylan2 460 . . . 4  |-  ( ( B  e.  A  /\  C  <Q  B )  -> 
( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A ) )
2322adantll 694 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
) )
2423pm2.43i 43 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  A )  /\  C  <Q  B )  ->  C  e.  A
)
2524ex 423 1  |-  ( ( A  e.  P.  /\  B  e.  A )  ->  ( C  <Q  B  ->  C  e.  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165    C. wpss 3166   (/)c0 3468   class class class wbr 4039    X. cxp 4703   Rel wrel 4710   Q.cnq 8490    <Q cltq 8496   P.cnp 8497
This theorem is referenced by:  prub  8634  addclprlem1  8656  mulclprlem  8659  distrlem4pr  8666  1idpr  8669  psslinpr  8671  prlem934  8673  ltaddpr  8674  ltexprlem2  8677  ltexprlem3  8678  ltexprlem6  8681  prlem936  8687  reclem2pr  8688  suplem1pr  8692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-ltnq 8558  df-np 8621
  Copyright terms: Public domain W3C validator