MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsbl Unicode version

Theorem prdsbl 18037
Description: A ball in the product metric for finite index set is the Cartesian product of balls in all coordinates. For infinite index set this is no longer true; instead the correct statement is that a *closed ball* is the product of closed balls in each coordinate (where closed ball means a set of the form in blcld 18051) - for a counterexample the point  p in  RR ^ NN whose  n-th coordinate is  1  -  1  /  n is in  X_ n  e.  NN ball ( 0 ,  1 ) but is not in the  1-ball of the product (since  d ( 0 ,  p )  =  1).

The last assumption,  0  <  A, is needed only in the case  I  =  (/), when the right side evaluates to  { (/) } and the left evaluates to  (/) if  A  <_  0 and  {
(/) } if  0  <  A. (Contributed by Mario Carneiro, 28-Aug-2015.)

Hypotheses
Ref Expression
prdsbl.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsbl.b  |-  B  =  ( Base `  Y
)
prdsbl.v  |-  V  =  ( Base `  R
)
prdsbl.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsbl.d  |-  D  =  ( dist `  Y
)
prdsbl.s  |-  ( ph  ->  S  e.  W )
prdsbl.i  |-  ( ph  ->  I  e.  Fin )
prdsbl.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsbl.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
prdsbl.p  |-  ( ph  ->  P  e.  B )
prdsbl.a  |-  ( ph  ->  A  e.  RR* )
prdsbl.g  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
prdsbl  |-  ( ph  ->  ( P ( ball `  D ) A )  =  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) )
Distinct variable groups:    x, A    x, B    x, D    x, I    x, P    ph, x
Allowed substitution hints:    R( x)    S( x)    E( x)    V( x)    W( x)    Y( x)    Z( x)

Proof of Theorem prdsbl
Dummy variables  f 
z  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbl.y . . . . . . . . 9  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsbl.b . . . . . . . . 9  |-  B  =  ( Base `  Y
)
3 prdsbl.s . . . . . . . . 9  |-  ( ph  ->  S  e.  W )
4 prdsbl.i . . . . . . . . 9  |-  ( ph  ->  I  e.  Fin )
5 prdsbl.r . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
65ralrimiva 2626 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I  R  e.  Z )
7 prdsbl.v . . . . . . . . 9  |-  V  =  ( Base `  R
)
81, 2, 3, 4, 6, 7prdsbas3 13380 . . . . . . . 8  |-  ( ph  ->  B  =  X_ x  e.  I  V )
98eleq2d 2350 . . . . . . 7  |-  ( ph  ->  ( f  e.  B  <->  f  e.  X_ x  e.  I  V ) )
109biimpa 470 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  f  e.  X_ x  e.  I  V )
11 ixpfn 6822 . . . . . 6  |-  ( f  e.  X_ x  e.  I  V  ->  f  Fn  I
)
12 vex 2791 . . . . . . . 8  |-  f  e. 
_V
1312elixp 6823 . . . . . . 7  |-  ( f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A )  <-> 
( f  Fn  I  /\  A. x  e.  I 
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A ) ) )
1413baib 871 . . . . . 6  |-  ( f  Fn  I  ->  (
f  e.  X_ x  e.  I  ( ( P `  x )
( ball `  E ) A )  <->  A. x  e.  I  ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A ) ) )
1510, 11, 143syl 18 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  (
f  e.  X_ x  e.  I  ( ( P `  x )
( ball `  E ) A )  <->  A. x  e.  I  ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A ) ) )
16 prdsbl.m . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
1716adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
18 prdsbl.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
1918ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  A  e.  RR* )
20 prdsbl.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  B )
211, 2, 3, 4, 6, 7, 20prdsbascl 13382 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I 
( P `  x
)  e.  V )
2221adantr 451 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( P `  x )  e.  V
)
2322r19.21bi 2641 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P `  x )  e.  V )
243adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  S  e.  W )
254adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  I  e.  Fin )
266adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  R  e.  Z )
27 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  f  e.  B )
281, 2, 24, 25, 26, 7, 27prdsbascl 13382 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( f `  x )  e.  V
)
2928r19.21bi 2641 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
f `  x )  e.  V )
30 elbl2 17950 . . . . . . 7  |-  ( ( ( E  e.  ( * Met `  V
)  /\  A  e.  RR* )  /\  ( ( P `  x )  e.  V  /\  (
f `  x )  e.  V ) )  -> 
( ( f `  x )  e.  ( ( P `  x
) ( ball `  E
) A )  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3117, 19, 23, 29, 30syl22anc 1183 . . . . . 6  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A )  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3231ralbidva 2559 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( f `  x
)  e.  ( ( P `  x ) ( ball `  E
) A )  <->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
33 xmetcl 17896 . . . . . . . . . 10  |-  ( ( E  e.  ( * Met `  V )  /\  ( P `  x )  e.  V  /\  ( f `  x
)  e.  V )  ->  ( ( P `
 x ) E ( f `  x
) )  e.  RR* )
3417, 23, 29, 33syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  RR* )
3534ralrimiva 2626 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  e. 
RR* )
36 eqid 2283 . . . . . . . . 9  |-  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  =  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )
37 breq1 4026 . . . . . . . . 9  |-  ( z  =  ( ( P `
 x ) E ( f `  x
) )  ->  (
z  <  A  <->  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3836, 37ralrnmpt 5669 . . . . . . . 8  |-  ( A. x  e.  I  (
( P `  x
) E ( f `
 x ) )  e.  RR*  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  <  A  <->  A. x  e.  I  ( ( P `  x ) E ( f `  x ) )  < 
A ) )
3935, 38syl 15 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  < 
A  <->  A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A ) )
40 prdsbl.g . . . . . . . . . 10  |-  ( ph  ->  0  <  A )
4140adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  0  <  A )
42 c0ex 8832 . . . . . . . . . 10  |-  0  e.  _V
43 breq1 4026 . . . . . . . . . 10  |-  ( z  =  0  ->  (
z  <  A  <->  0  <  A ) )
4442, 43ralsn 3674 . . . . . . . . 9  |-  ( A. z  e.  { 0 } z  <  A  <->  0  <  A )
4541, 44sylibr 203 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  A. z  e.  { 0 } z  <  A )
46 ralunb 3356 . . . . . . . . 9  |-  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  <->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  <  A  /\  A. z  e.  { 0 } z  <  A
) )
4720adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  P  e.  B )
48 prdsbl.e . . . . . . . . . . . 12  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
49 prdsbl.d . . . . . . . . . . . 12  |-  D  =  ( dist `  Y
)
501, 2, 24, 25, 26, 47, 27, 7, 48, 49prdsdsval3 13384 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  ( P D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
51 xrltso 10475 . . . . . . . . . . . . 13  |-  <  Or  RR*
5251a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  <  Or 
RR* )
5336rnmpt 4925 . . . . . . . . . . . . . . 15  |-  ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  =  { y  |  E. x  e.  I  y  =  ( ( P `  x
) E ( f `
 x ) ) }
54 abrexfi 7156 . . . . . . . . . . . . . . 15  |-  ( I  e.  Fin  ->  { y  |  E. x  e.  I  y  =  ( ( P `  x
) E ( f `
 x ) ) }  e.  Fin )
5553, 54syl5eqel 2367 . . . . . . . . . . . . . 14  |-  ( I  e.  Fin  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  e.  Fin )
5625, 55syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  e.  Fin )
57 snfi 6941 . . . . . . . . . . . . 13  |-  { 0 }  e.  Fin
58 unfi 7124 . . . . . . . . . . . . 13  |-  ( ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  e. 
Fin  /\  { 0 }  e.  Fin )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  e.  Fin )
5956, 57, 58sylancl 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  e. 
Fin )
60 ssun2 3339 . . . . . . . . . . . . . 14  |-  { 0 }  C_  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )
6142snss 3748 . . . . . . . . . . . . . 14  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  <->  { 0 }  C_  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )
6260, 61mpbir 200 . . . . . . . . . . . . 13  |-  0  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )
63 ne0i 3461 . . . . . . . . . . . . 13  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  =/=  (/) )
6462, 63mp1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  =/=  (/) )
6534, 36fmptd 5684 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  B )  ->  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) ) : I --> RR* )
66 frn 5395 . . . . . . . . . . . . . 14  |-  ( ( x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) ) : I --> RR*  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  C_  RR* )
6765, 66syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  C_  RR* )
68 0xr 8878 . . . . . . . . . . . . . . 15  |-  0  e.  RR*
6968a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  B )  ->  0  e.  RR* )
7069snssd 3760 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  B )  ->  { 0 }  C_  RR* )
7167, 70unssd 3351 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  B )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
72 fisupcl 7218 . . . . . . . . . . . 12  |-  ( (  <  Or  RR*  /\  (
( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  e.  Fin  /\  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } )  =/=  (/)  /\  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } ) )
7352, 59, 64, 71, 72syl13anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  B )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) )  u. 
{ 0 } ) )
7450, 73eqeltrd 2357 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  B )  ->  ( P D f )  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } ) )
75 breq1 4026 . . . . . . . . . . 11  |-  ( z  =  ( P D f )  ->  (
z  <  A  <->  ( P D f )  < 
A ) )
7675rspcv 2880 . . . . . . . . . 10  |-  ( ( P D f )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } )  ->  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  ->  ( P D f )  < 
A ) )
7774, 76syl 15 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) z  <  A  ->  ( P D f )  < 
A ) )
7846, 77syl5bir 209 . . . . . . . 8  |-  ( (
ph  /\  f  e.  B )  ->  (
( A. z  e. 
ran  ( x  e.  I  |->  ( ( P `
 x ) E ( f `  x
) ) ) z  <  A  /\  A. z  e.  { 0 } z  <  A
)  ->  ( P D f )  < 
A ) )
7945, 78mpan2d 655 . . . . . . 7  |-  ( (
ph  /\  f  e.  B )  ->  ( A. z  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) z  < 
A  ->  ( P D f )  < 
A ) )
8039, 79sylbird 226 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A  -> 
( P D f )  <  A ) )
8171adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )  C_  RR* )
82 ssun1 3338 . . . . . . . . . . 11  |-  ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  C_  ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } )
83 ovex 5883 . . . . . . . . . . . . . 14  |-  ( ( P `  x ) E ( f `  x ) )  e. 
_V
8483elabrex 5765 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  (
( P `  x
) E ( f `
 x ) )  e.  { y  |  E. x  e.  I 
y  =  ( ( P `  x ) E ( f `  x ) ) } )
8584adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  { y  |  E. x  e.  I 
y  =  ( ( P `  x ) E ( f `  x ) ) } )
8685, 53syl6eleqr 2374 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) ) )
8782, 86sseldi 3178 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )
88 supxrub 10643 . . . . . . . . . 10  |-  ( ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } )  C_  RR*  /\  (
( P `  x
) E ( f `
 x ) )  e.  ( ran  (
x  e.  I  |->  ( ( P `  x
) E ( f `
 x ) ) )  u.  { 0 } ) )  -> 
( ( P `  x ) E ( f `  x ) )  <_  sup (
( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8981, 87, 88syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  <_  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
9050adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P D f )  =  sup ( ( ran  ( x  e.  I  |->  ( ( P `  x ) E ( f `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
9189, 90breqtrrd 4049 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P `  x
) E ( f `
 x ) )  <_  ( P D f ) )
921, 2, 7, 48, 49, 3, 4, 5, 16prdsxmet 17933 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( * Met `  B ) )
9392ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  D  e.  ( * Met `  B
) )
9420ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  P  e.  B )
9527adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  f  e.  B )
96 xmetcl 17896 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  B )  /\  P  e.  B  /\  f  e.  B
)  ->  ( P D f )  e. 
RR* )
9793, 94, 95, 96syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  ( P D f )  e. 
RR* )
98 xrlelttr 10487 . . . . . . . . 9  |-  ( ( ( ( P `  x ) E ( f `  x ) )  e.  RR*  /\  ( P D f )  e. 
RR*  /\  A  e.  RR* )  ->  ( (
( ( P `  x ) E ( f `  x ) )  <_  ( P D f )  /\  ( P D f )  <  A )  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
9934, 97, 19, 98syl3anc 1182 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( ( ( P `
 x ) E ( f `  x
) )  <_  ( P D f )  /\  ( P D f )  <  A )  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
10091, 99mpand 656 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  B )  /\  x  e.  I )  ->  (
( P D f )  <  A  -> 
( ( P `  x ) E ( f `  x ) )  <  A ) )
101100ralrimdva 2633 . . . . . 6  |-  ( (
ph  /\  f  e.  B )  ->  (
( P D f )  <  A  ->  A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A ) )
10280, 101impbid 183 . . . . 5  |-  ( (
ph  /\  f  e.  B )  ->  ( A. x  e.  I 
( ( P `  x ) E ( f `  x ) )  <  A  <->  ( P D f )  < 
A ) )
10315, 32, 1023bitrrd 271 . . . 4  |-  ( (
ph  /\  f  e.  B )  ->  (
( P D f )  <  A  <->  f  e.  X_ x  e.  I  ( ( P `  x
) ( ball `  E
) A ) ) )
104103pm5.32da 622 . . 3  |-  ( ph  ->  ( ( f  e.  B  /\  ( P D f )  < 
A )  <->  ( f  e.  B  /\  f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) ) ) )
105 elbl 17949 . . . 4  |-  ( ( D  e.  ( * Met `  B )  /\  P  e.  B  /\  A  e.  RR* )  ->  ( f  e.  ( P ( ball `  D
) A )  <->  ( f  e.  B  /\  ( P D f )  < 
A ) ) )
10692, 20, 18, 105syl3anc 1182 . . 3  |-  ( ph  ->  ( f  e.  ( P ( ball `  D
) A )  <->  ( f  e.  B  /\  ( P D f )  < 
A ) ) )
10721r19.21bi 2641 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  ( P `  x )  e.  V )
10818adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  I )  ->  A  e.  RR* )
109 blssm 17968 . . . . . . . . 9  |-  ( ( E  e.  ( * Met `  V )  /\  ( P `  x )  e.  V  /\  A  e.  RR* )  ->  ( ( P `  x ) ( ball `  E ) A ) 
C_  V )
11016, 107, 108, 109syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( P `  x
) ( ball `  E
) A )  C_  V )
111110ralrimiva 2626 . . . . . . 7  |-  ( ph  ->  A. x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  V )
112 ss2ixp 6829 . . . . . . 7  |-  ( A. x  e.  I  (
( P `  x
) ( ball `  E
) A )  C_  V  ->  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  X_ x  e.  I  V )
113111, 112syl 15 . . . . . 6  |-  ( ph  -> 
X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  X_ x  e.  I  V )
114113, 8sseqtr4d 3215 . . . . 5  |-  ( ph  -> 
X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) 
C_  B )
115114sseld 3179 . . . 4  |-  ( ph  ->  ( f  e.  X_ x  e.  I  (
( P `  x
) ( ball `  E
) A )  -> 
f  e.  B ) )
116115pm4.71rd 616 . . 3  |-  ( ph  ->  ( f  e.  X_ x  e.  I  (
( P `  x
) ( ball `  E
) A )  <->  ( f  e.  B  /\  f  e.  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) ) ) )
117104, 106, 1163bitr4d 276 . 2  |-  ( ph  ->  ( f  e.  ( P ( ball `  D
) A )  <->  f  e.  X_ x  e.  I  ( ( P `  x
) ( ball `  E
) A ) ) )
118117eqrdv 2281 1  |-  ( ph  ->  ( P ( ball `  D ) A )  =  X_ x  e.  I 
( ( P `  x ) ( ball `  E ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544    u. cun 3150    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    e. cmpt 4077    Or wor 4313    X. cxp 4687   ran crn 4690    |` cres 4691    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   supcsup 7193   0cc0 8737   RR*cxr 8866    < clt 8867    <_ cle 8868   Basecbs 13148   distcds 13217   X_scprds 13346   * Metcxmt 16369   ballcbl 16371
This theorem is referenced by:  prdsxmslem2  18075  prdstotbnd  26518  prdsbnd2  26519
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-xmet 16373  df-bl 16375
  Copyright terms: Public domain W3C validator