Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd Unicode version

Theorem prdsbnd 26620
Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdsbnd.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Bnd `  V
) )
Assertion
Ref Expression
prdsbnd  |-  ( ph  ->  D  e.  ( Bnd `  B ) )
Distinct variable groups:    x, R    x, B    ph, x    x, I    x, S    x, Y
Allowed substitution hints:    D( x)    E( x)    V( x)    W( x)

Proof of Theorem prdsbnd
Dummy variables  z 
f  g  k  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . 4  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
2 eqid 2296 . . . 4  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
3 prdsbnd.v . . . 4  |-  V  =  ( Base `  ( R `  x )
)
4 prdsbnd.e . . . 4  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
5 eqid 2296 . . . 4  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
6 prdsbnd.s . . . 4  |-  ( ph  ->  S  e.  W )
7 prdsbnd.i . . . 4  |-  ( ph  ->  I  e.  Fin )
8 fvex 5555 . . . . 5  |-  ( R `
 x )  e. 
_V
98a1i 10 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
10 prdsbnd.m . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Bnd `  V
) )
11 bndmet 26608 . . . . 5  |-  ( E  e.  ( Bnd `  V
)  ->  E  e.  ( Met `  V ) )
1210, 11syl 15 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
131, 2, 3, 4, 5, 6, 7, 9, 12prdsmet 17950 . . 3  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
14 prdsbnd.d . . . . 5  |-  D  =  ( dist `  Y
)
15 prdsbnd.y . . . . . . 7  |-  Y  =  ( S X_s R )
16 prdsbnd.r . . . . . . . . 9  |-  ( ph  ->  R  Fn  I )
17 dffn5 5584 . . . . . . . . 9  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
1816, 17sylib 188 . . . . . . . 8  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
1918oveq2d 5890 . . . . . . 7  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2015, 19syl5eq 2340 . . . . . 6  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2120fveq2d 5545 . . . . 5  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2214, 21syl5eq 2340 . . . 4  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
23 prdsbnd.b . . . . . 6  |-  B  =  ( Base `  Y
)
2420fveq2d 5545 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2523, 24syl5eq 2340 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2625fveq2d 5545 . . . 4  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
2722, 26eleq12d 2364 . . 3  |-  ( ph  ->  ( D  e.  ( Met `  B )  <-> 
( dist `  ( S X_s ( x  e.  I  |->  ( R `  x ) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) ) )
2813, 27mpbird 223 . 2  |-  ( ph  ->  D  e.  ( Met `  B ) )
29 isbnd3 26611 . . . . . . 7  |-  ( E  e.  ( Bnd `  V
)  <->  ( E  e.  ( Met `  V
)  /\  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) ) )
3029simprbi 450 . . . . . 6  |-  ( E  e.  ( Bnd `  V
)  ->  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) )
3110, 30syl 15 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w
) )
3231ralrimiva 2639 . . . 4  |-  ( ph  ->  A. x  e.  I  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w ) )
33 oveq2 5882 . . . . . 6  |-  ( w  =  ( k `  x )  ->  (
0 [,] w )  =  ( 0 [,] ( k `  x
) ) )
34 feq3 5393 . . . . . 6  |-  ( ( 0 [,] w )  =  ( 0 [,] ( k `  x
) )  ->  ( E : ( V  X.  V ) --> ( 0 [,] w )  <->  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )
3533, 34syl 15 . . . . 5  |-  ( w  =  ( k `  x )  ->  ( E : ( V  X.  V ) --> ( 0 [,] w )  <->  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )
3635ac6sfi 7117 . . . 4  |-  ( ( I  e.  Fin  /\  A. x  e.  I  E. w  e.  RR  E : ( V  X.  V ) --> ( 0 [,] w ) )  ->  E. k ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )
377, 32, 36syl2anc 642 . . 3  |-  ( ph  ->  E. k ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )
38 frn 5411 . . . . . . . . . 10  |-  ( k : I --> RR  ->  ran  k  C_  RR )
3938adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  k :
I --> RR )  ->  ran  k  C_  RR )
40 0re 8854 . . . . . . . . . . . 12  |-  0  e.  RR
4140a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  RR )
4241snssd 3776 . . . . . . . . . 10  |-  ( ph  ->  { 0 }  C_  RR )
4342adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  k :
I --> RR )  ->  { 0 }  C_  RR )
4439, 43unssd 3364 . . . . . . . 8  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  C_  RR )
45 ffn 5405 . . . . . . . . . . . 12  |-  ( k : I --> RR  ->  k  Fn  I )
46 dffn4 5473 . . . . . . . . . . . 12  |-  ( k  Fn  I  <->  k :
I -onto-> ran  k )
4745, 46sylib 188 . . . . . . . . . . 11  |-  ( k : I --> RR  ->  k : I -onto-> ran  k
)
48 fofi 7158 . . . . . . . . . . 11  |-  ( ( I  e.  Fin  /\  k : I -onto-> ran  k
)  ->  ran  k  e. 
Fin )
497, 47, 48syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  k :
I --> RR )  ->  ran  k  e.  Fin )
50 snfi 6957 . . . . . . . . . 10  |-  { 0 }  e.  Fin
51 unfi 7140 . . . . . . . . . 10  |-  ( ( ran  k  e.  Fin  /\ 
{ 0 }  e.  Fin )  ->  ( ran  k  u.  { 0 } )  e.  Fin )
5249, 50, 51sylancl 643 . . . . . . . . 9  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  e. 
Fin )
53 ssun2 3352 . . . . . . . . . . 11  |-  { 0 }  C_  ( ran  k  u.  { 0 } )
54 c0ex 8848 . . . . . . . . . . . 12  |-  0  e.  _V
5554snid 3680 . . . . . . . . . . 11  |-  0  e.  { 0 }
5653, 55sselii 3190 . . . . . . . . . 10  |-  0  e.  ( ran  k  u. 
{ 0 } )
57 ne0i 3474 . . . . . . . . . 10  |-  ( 0  e.  ( ran  k  u.  { 0 } )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
5856, 57mp1i 11 . . . . . . . . 9  |-  ( (
ph  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  =/=  (/) )
59 ltso 8919 . . . . . . . . . 10  |-  <  Or  RR
60 fisupcl 7234 . . . . . . . . . 10  |-  ( (  <  Or  RR  /\  ( ( ran  k  u.  { 0 } )  e.  Fin  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  ( ran  k  u.  { 0 } )  C_  RR ) )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  { 0 } ) )
6159, 60mpan 651 . . . . . . . . 9  |-  ( ( ( ran  k  u. 
{ 0 } )  e.  Fin  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  ( ran  k  u.  { 0 } )  C_  RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  {
0 } ) )
6252, 58, 44, 61syl3anc 1182 . . . . . . . 8  |-  ( (
ph  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  ( ran  k  u.  { 0 } ) )
6344, 62sseldd 3194 . . . . . . 7  |-  ( (
ph  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
6463adantrr 697 . . . . . 6  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
65 metf 17911 . . . . . . . . 9  |-  ( D  e.  ( Met `  B
)  ->  D :
( B  X.  B
) --> RR )
66 ffn 5405 . . . . . . . . 9  |-  ( D : ( B  X.  B ) --> RR  ->  D  Fn  ( B  X.  B ) )
6728, 65, 663syl 18 . . . . . . . 8  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
6867adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D  Fn  ( B  X.  B
) )
6928ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D  e.  ( Met `  B ) )
70 simprl 732 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
7170adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  f  e.  B )
72 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
7372adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  g  e.  B )
74 metcl 17913 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  B )  /\  f  e.  B  /\  g  e.  B )  ->  (
f D g )  e.  RR )
7569, 71, 73, 74syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  e.  RR )
76 metge0 17926 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  B )  /\  f  e.  B  /\  g  e.  B )  ->  0  <_  ( f D g ) )
7769, 71, 73, 76syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  <_  ( f D g ) )
7822proplem3 13609 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  ( f ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) g ) )
796adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  W )
807adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  Fin )
818a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
8281ralrimiva 2639 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( R `  x
)  e.  _V )
8325adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
8470, 83eleqtrd 2372 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
8572, 83eleqtrd 2372 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
861, 2, 79, 80, 82, 84, 85, 3, 4, 5prdsdsval3 13400 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) g )  =  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8778, 86eqtrd 2328 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
8887adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  =  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) , 
RR* ,  <  ) )
8912adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
901, 2, 79, 80, 82, 3, 84prdsbascl 13398 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
9190r19.21bi 2654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
f `  x )  e.  V )
921, 2, 79, 80, 82, 3, 85prdsbascl 13398 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
9392r19.21bi 2654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
g `  x )  e.  V )
94 metcl 17913 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( E  e.  ( Met `  V )  /\  (
f `  x )  e.  V  /\  (
g `  x )  e.  V )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
9589, 91, 93, 94syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  x  e.  I )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
9695ad2ant2r 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR )
97 ffvelrn 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k : I --> RR  /\  x  e.  I )  ->  ( k `  x
)  e.  RR )
9897ad2ant2lr 728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  RR )
9963adantlr 695 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
10099adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
101 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  E : ( V  X.  V ) --> ( 0 [,] (
k `  x )
) )
10291ad2ant2r 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( f `  x )  e.  V
)
10393ad2ant2r 727 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( g `  x )  e.  V
)
104 fovrn 6006 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E : ( V  X.  V ) --> ( 0 [,] ( k `
 x ) )  /\  ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  ( 0 [,] ( k `
 x ) ) )
105101, 102, 103, 104syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  ( 0 [,] ( k `
 x ) ) )
106 elicc2 10731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 0  e.  RR  /\  ( k `  x
)  e.  RR )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  ( 0 [,] (
k `  x )
)  <->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) ) )
10740, 98, 106sylancr 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  ( 0 [,] (
k `  x )
)  <->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) ) )
108105, 107mpbid 201 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( ( f `  x ) E ( g `  x ) )  e.  RR  /\  0  <_ 
( ( f `  x ) E ( g `  x ) )  /\  ( ( f `  x ) E ( g `  x ) )  <_ 
( k `  x
) ) )
109108simp3d 969 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  <_  (
k `  x )
)
11044adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  -> 
( ran  k  u.  { 0 } )  C_  RR )
111110adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ran  k  u.  { 0 } ) 
C_  RR )
11256, 57mp1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
113 fimaxre2 9718 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ran  k  u. 
{ 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  e.  Fin )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
11444, 52, 113syl2anc 642 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  k :
I --> RR )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
115114adantlr 695 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
116115adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u.  { 0 } ) w  <_ 
z )
117 ssun1 3351 . . . . . . . . . . . . . . . . . . . 20  |-  ran  k  C_  ( ran  k  u. 
{ 0 } )
11845ad2antlr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  k  Fn  I
)
119 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  x  e.  I
)
120 fnfvelrn 5678 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( k  Fn  I  /\  x  e.  I )  ->  ( k `  x
)  e.  ran  k
)
121118, 119, 120syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  ran  k )
122117, 121sseldi 3191 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  e.  ( ran  k  u.  {
0 } ) )
123 suprub 9731 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ran  k  u.  { 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )  /\  ( k `  x
)  e.  ( ran  k  u.  { 0 } ) )  -> 
( k `  x
)  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)
124111, 112, 116, 122, 123syl31anc 1185 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( k `  x )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
12596, 98, 100, 109, 124letrd 8989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  ( x  e.  I  /\  E :
( V  X.  V
) --> ( 0 [,] ( k `  x
) ) ) )  ->  ( ( f `
 x ) E ( g `  x
) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
126125expr 598 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  B  /\  g  e.  B
) )  /\  k : I --> RR )  /\  x  e.  I
)  ->  ( E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) )  -> 
( ( f `  x ) E ( g `  x ) )  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
127126ralimdva 2634 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  k :
I --> RR )  -> 
( A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] (
k `  x )
)  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
128127impr 602 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
129 ovex 5899 . . . . . . . . . . . . . . . 16  |-  ( ( f `  x ) E ( g `  x ) )  e. 
_V
130129rgenw 2623 . . . . . . . . . . . . . . 15  |-  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e. 
_V
131 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )
132 breq1 4042 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( ( f `
 x ) E ( g `  x
) )  ->  (
w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  ( ( f `  x
) E ( g `
 x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
133131, 132ralrnmpt 5685 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  _V  ->  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
134130, 133ax-mp 8 . . . . . . . . . . . . . 14  |-  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. x  e.  I  ( ( f `  x
) E ( g `
 x ) )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
135128, 134sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
13644ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  k  u.  { 0 } )  C_  RR )
13756, 57mp1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  k  u.  { 0 } )  =/=  (/) )
138114ad2ant2r 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )
13956a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  e.  ( ran  k  u.  {
0 } ) )
140 suprub 9731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ran  k  u.  { 0 } ) 
C_  RR  /\  ( ran  k  u.  { 0 } )  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ( ran  k  u. 
{ 0 } ) w  <_  z )  /\  0  e.  ( ran  k  u.  { 0 } ) )  -> 
0  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)
141136, 137, 138, 139, 140syl31anc 1185 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  0  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
142 elsni 3677 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { 0 }  ->  w  =  0 )
143142breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( w  e.  { 0 }  ->  ( w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  0  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )
144141, 143syl5ibrcom 213 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( w  e.  { 0 }  ->  w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
145144ralrimiv 2638 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  { 0 } w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
146 ralunb 3369 . . . . . . . . . . . . 13  |-  ( A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  ( A. w  e.  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) w  <_  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  /\  A. w  e.  {
0 } w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
147135, 145, 146sylanbrc 645 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
14895, 131fmptd 5700 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
149 frn 5411 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) ) : I --> RR  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
150148, 149syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
15140a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  e.  RR )
152151snssd 3776 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  { 0 }  C_  RR )
153150, 152unssd 3364 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR )
154 ressxr 8892 . . . . . . . . . . . . . . 15  |-  RR  C_  RR*
155153, 154syl6ss 3204 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
156155adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* )
15764adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )
158157rexrd 8897 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR* )
159 supxrleub 10661 . . . . . . . . . . . . 13  |-  ( ( ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR*  /\  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR* )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
160156, 158, 159syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  <->  A. w  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } ) w  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
161147, 160mpbird 223 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
16288, 161eqbrtrd 4059 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )
163 elicc2 10731 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR )  -> 
( ( f D g )  e.  ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
)  <->  ( ( f D g )  e.  RR  /\  0  <_ 
( f D g )  /\  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
16440, 157, 163sylancr 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( (
f D g )  e.  ( 0 [,]
sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )  <->  ( (
f D g )  e.  RR  /\  0  <_  ( f D g )  /\  ( f D g )  <_  sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
16575, 77, 162, 164mpbir3and 1135 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  B  /\  g  e.  B )
)  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
166165an32s 779 . . . . . . . 8  |-  ( ( ( ph  /\  (
k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
) )
167166ralrimivva 2648 . . . . . . 7  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  A. f  e.  B  A. g  e.  B  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
168 ffnov 5964 . . . . . . 7  |-  ( D : ( B  X.  B ) --> ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
)  <->  ( D  Fn  ( B  X.  B
)  /\  A. f  e.  B  A. g  e.  B  ( f D g )  e.  ( 0 [,] sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) ) )
16968, 167, 168sylanbrc 645 . . . . . 6  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  D :
( B  X.  B
) --> ( 0 [,]
sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) ) )
170 oveq2 5882 . . . . . . . 8  |-  ( m  =  sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )  ->  ( 0 [,] m
)  =  ( 0 [,] sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )
) )
171 feq3 5393 . . . . . . . 8  |-  ( ( 0 [,] m )  =  ( 0 [,]
sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  ) )  -> 
( D : ( B  X.  B ) --> ( 0 [,] m
)  <->  D : ( B  X.  B ) --> ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) ) )
172170, 171syl 15 . . . . . . 7  |-  ( m  =  sup ( ( ran  k  u.  {
0 } ) ,  RR ,  <  )  ->  ( D : ( B  X.  B ) --> ( 0 [,] m
)  <->  D : ( B  X.  B ) --> ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) ) )
173172rspcev 2897 . . . . . 6  |-  ( ( sup ( ( ran  k  u.  { 0 } ) ,  RR ,  <  )  e.  RR  /\  D : ( B  X.  B ) --> ( 0 [,] sup (
( ran  k  u.  { 0 } ) ,  RR ,  <  )
) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) )
17464, 169, 173syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) ) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) )
175174ex 423 . . . 4  |-  ( ph  ->  ( ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m ) ) )
176175exlimdv 1626 . . 3  |-  ( ph  ->  ( E. k ( k : I --> RR  /\  A. x  e.  I  E : ( V  X.  V ) --> ( 0 [,] ( k `  x ) ) )  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m ) ) )
17737, 176mpd 14 . 2  |-  ( ph  ->  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m ) )
178 isbnd3 26611 . 2  |-  ( D  e.  ( Bnd `  B
)  <->  ( D  e.  ( Met `  B
)  /\  E. m  e.  RR  D : ( B  X.  B ) --> ( 0 [,] m
) ) )
17928, 177, 178sylanbrc 645 1  |-  ( ph  ->  D  e.  ( Bnd `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    u. cun 3163    C_ wss 3165   (/)c0 3468   {csn 3653   class class class wbr 4039    e. cmpt 4093    Or wor 4329    X. cxp 4703   ran crn 4706    |` cres 4707    Fn wfn 5266   -->wf 5267   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874   Fincfn 6879   supcsup 7209   RRcr 8752   0cc0 8753   RR*cxr 8882    < clt 8883    <_ cle 8884   [,]cicc 10675   Basecbs 13164   distcds 13233   X_scprds 13362   Metcme 16386   Bndcbnd 26594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-ec 6678  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-xmet 16389  df-met 16390  df-bl 16391  df-bnd 26606
  Copyright terms: Public domain W3C validator