Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prdsbnd2 Unicode version

Theorem prdsbnd2 26519
Description: If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
prdsbnd.y  |-  Y  =  ( S X_s R )
prdsbnd.b  |-  B  =  ( Base `  Y
)
prdsbnd.v  |-  V  =  ( Base `  ( R `  x )
)
prdsbnd.e  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
prdsbnd.d  |-  D  =  ( dist `  Y
)
prdsbnd.s  |-  ( ph  ->  S  e.  W )
prdsbnd.i  |-  ( ph  ->  I  e.  Fin )
prdsbnd.r  |-  ( ph  ->  R  Fn  I )
prdsbnd2.c  |-  C  =  ( D  |`  ( A  X.  A ) )
prdsbnd2.e  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
prdsbnd2.m  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
Assertion
Ref Expression
prdsbnd2  |-  ( ph  ->  ( C  e.  (
TotBnd `  A )  <->  C  e.  ( Bnd `  A ) ) )
Distinct variable groups:    y, D    x, y, R    x, B, y    y, E    ph, x, y   
x, I, y    x, S    y, V    x, Y
Allowed substitution hints:    A( x, y)    C( x, y)    D( x)    S( y)    E( x)    V( x)    W( x, y)    Y( y)

Proof of Theorem prdsbnd2
Dummy variables  r 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 totbndbnd 26513 . 2  |-  ( C  e.  ( TotBnd `  A
)  ->  C  e.  ( Bnd `  A ) )
2 bndmet 26505 . . . . 5  |-  ( C  e.  ( Bnd `  A
)  ->  C  e.  ( Met `  A ) )
3 0totbnd 26497 . . . . 5  |-  ( A  =  (/)  ->  ( C  e.  ( TotBnd `  A
)  <->  C  e.  ( Met `  A ) ) )
42, 3syl5ibr 212 . . . 4  |-  ( A  =  (/)  ->  ( C  e.  ( Bnd `  A
)  ->  C  e.  ( TotBnd `  A )
) )
54a1i 10 . . 3  |-  ( ph  ->  ( A  =  (/)  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) ) )
6 n0 3464 . . . 4  |-  ( A  =/=  (/)  <->  E. a  a  e.  A )
7 simprr 733 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  C  e.  ( Bnd `  A ) )
8 eqid 2283 . . . . . . . . . . . 12  |-  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
9 eqid 2283 . . . . . . . . . . . 12  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
10 prdsbnd.v . . . . . . . . . . . 12  |-  V  =  ( Base `  ( R `  x )
)
11 prdsbnd.e . . . . . . . . . . . 12  |-  E  =  ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )
12 eqid 2283 . . . . . . . . . . . 12  |-  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
13 prdsbnd.s . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  W )
14 prdsbnd.i . . . . . . . . . . . 12  |-  ( ph  ->  I  e.  Fin )
15 fvex 5539 . . . . . . . . . . . . 13  |-  ( R `
 x )  e. 
_V
1615a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  _V )
17 prdsbnd2.e . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
188, 9, 10, 11, 12, 13, 14, 16, 17prdsmet 17934 . . . . . . . . . . 11  |-  ( ph  ->  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) )
19 prdsbnd.d . . . . . . . . . . . . 13  |-  D  =  ( dist `  Y
)
20 prdsbnd.y . . . . . . . . . . . . . . 15  |-  Y  =  ( S X_s R )
21 prdsbnd.r . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  Fn  I )
22 dffn5 5568 . . . . . . . . . . . . . . . . 17  |-  ( R  Fn  I  <->  R  =  ( x  e.  I  |->  ( R `  x
) ) )
2321, 22sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  R  =  ( x  e.  I  |->  ( R `
 x ) ) )
2423oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( S X_s R )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2520, 24syl5eq 2327 . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  =  ( S
X_s ( x  e.  I  |->  ( R `  x
) ) ) )
2625fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
2719, 26syl5eq 2327 . . . . . . . . . . . 12  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
28 prdsbnd.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  Y
)
2925fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
3028, 29syl5eq 2327 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
3130fveq2d 5529 . . . . . . . . . . . 12  |-  ( ph  ->  ( Met `  B
)  =  ( Met `  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) ) )
3227, 31eleq12d 2351 . . . . . . . . . . 11  |-  ( ph  ->  ( D  e.  ( Met `  B )  <-> 
( dist `  ( S X_s ( x  e.  I  |->  ( R `  x ) ) ) )  e.  ( Met `  ( Base `  ( S X_s (
x  e.  I  |->  ( R `  x ) ) ) ) ) ) )
3318, 32mpbird 223 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( Met `  B ) )
3433adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  D  e.  ( Met `  B ) )
35 simpr 447 . . . . . . . . . . 11  |-  ( ( a  e.  A  /\  C  e.  ( Bnd `  A ) )  ->  C  e.  ( Bnd `  A ) )
36 prdsbnd2.c . . . . . . . . . . . 12  |-  C  =  ( D  |`  ( A  X.  A ) )
3736bnd2lem 26515 . . . . . . . . . . 11  |-  ( ( D  e.  ( Met `  B )  /\  C  e.  ( Bnd `  A
) )  ->  A  C_  B )
3833, 35, 37syl2an 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  A  C_  B )
39 simprl 732 . . . . . . . . . 10  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
a  e.  A )
4038, 39sseldd 3181 . . . . . . . . 9  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
a  e.  B )
4136ssbnd 26512 . . . . . . . . 9  |-  ( ( D  e.  ( Met `  B )  /\  a  e.  B )  ->  ( C  e.  ( Bnd `  A )  <->  E. r  e.  RR  A  C_  (
a ( ball `  D
) r ) ) )
4234, 40, 41syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
( C  e.  ( Bnd `  A )  <->  E. r  e.  RR  A  C_  ( a (
ball `  D )
r ) ) )
437, 42mpbid 201 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  E. r  e.  RR  A  C_  ( a (
ball `  D )
r ) )
44 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  A  C_  ( a ( ball `  D ) r ) )
45 xpss12 4792 . . . . . . . . . . . . 13  |-  ( ( A  C_  ( a
( ball `  D )
r )  /\  A  C_  ( a ( ball `  D ) r ) )  ->  ( A  X.  A )  C_  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )
4644, 44, 45syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ( A  X.  A )  C_  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) )
47 resabs1 4984 . . . . . . . . . . . 12  |-  ( ( A  X.  A ) 
C_  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) )  ->  ( ( D  |`  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )  |`  ( A  X.  A ) )  =  ( D  |`  ( A  X.  A
) ) )
4846, 47syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  =  ( D  |`  ( A  X.  A ) ) )
4948, 36syl6eqr 2333 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  =  C )
50 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ph )
5140adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  B )
52 simprl 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR )
5339adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  A )
5444, 53sseldd 3181 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  a  e.  ( a ( ball `  D ) r ) )
55 ne0i 3461 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( a (
ball `  D )
r )  ->  (
a ( ball `  D
) r )  =/=  (/) )
5654, 55syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
a ( ball `  D
) r )  =/=  (/) )
5733ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  D  e.  ( Met `  B
) )
58 metxmet 17899 . . . . . . . . . . . . . . . 16  |-  ( D  e.  ( Met `  B
)  ->  D  e.  ( * Met `  B
) )
5957, 58syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  D  e.  ( * Met `  B
) )
6052rexrd 8881 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR* )
61 xbln0 17965 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  B )  /\  a  e.  B  /\  r  e.  RR* )  ->  ( ( a (
ball `  D )
r )  =/=  (/)  <->  0  <  r ) )
6259, 51, 60, 61syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( a ( ball `  D ) r )  =/=  (/)  <->  0  <  r
) )
6356, 62mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  0  <  r )
6452, 63elrpd 10388 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  r  e.  RR+ )
6525adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  Y  =  ( S X_s ( x  e.  I  |->  ( R `  x ) ) ) )
66 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )  =  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
67 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  =  (
Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )
68 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  x  ->  ( R `  y )  =  ( R `  x ) )
6968fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  x  ->  ( dist `  ( R `  y ) )  =  ( dist `  ( R `  x )
) )
7068fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  =  x  ->  ( Base `  ( R `  y ) )  =  ( Base `  ( R `  x )
) )
7170, 10syl6eqr 2333 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  =  x  ->  ( Base `  ( R `  y ) )  =  V )
7271, 71xpeq12d 4714 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  x  ->  (
( Base `  ( R `  y ) )  X.  ( Base `  ( R `  y )
) )  =  ( V  X.  V ) )
7369, 72reseq12d 4956 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  x  ->  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) )  =  ( ( dist `  ( R `  x
) )  |`  ( V  X.  V ) ) )
7473, 11syl6eqr 2333 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  x  ->  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) )  =  E )
7574fveq2d 5529 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  ( ball `  ( ( dist `  ( R `  y
) )  |`  (
( Base `  ( R `  y ) )  X.  ( Base `  ( R `  y )
) ) ) )  =  ( ball `  E
) )
76 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  (
a `  y )  =  ( a `  x ) )
77 eqidd 2284 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  x  ->  r  =  r )
7875, 76, 77oveq123d 5879 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  x  ->  (
( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r )  =  ( ( a `  x ) ( ball `  E ) r ) )
7968, 78oveq12d 5876 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  x  ->  (
( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) )  =  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
8079cbvmptv 4111 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  =  ( x  e.  I  |->  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
8180oveq2i 5869 . . . . . . . . . . . . . . . 16  |-  ( S
X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )  =  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
8281fveq2i 5528 . . . . . . . . . . . . . . 15  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( dist `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
8313adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  S  e.  W )
8414adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  I  e.  Fin )
8515a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( R `  x )  e.  _V )
86 ovex 5883 . . . . . . . . . . . . . . . 16  |-  ( ( a `  x ) ( ball `  E
) r )  e. 
_V
8786a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  e.  _V )
8865, 66, 67, 19, 82, 83, 83, 84, 85, 87ressprdsds 17935 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( D  |`  ( ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  X.  ( Base `  ( S X_s (
x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) ) ) )
8917adantlr 695 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( Met `  V ) )
90 metxmet 17899 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( * Met `  V
) )
9189, 90syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  E  e.  ( * Met `  V
) )
9216ralrimiva 2626 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  A. x  e.  I 
( R `  x
)  e.  _V )
9392adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( R `  x
)  e.  _V )
94 simprl 732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  B )
9530adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
9694, 95eleqtrd 2359 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  ( Base `  ( S X_s ( x  e.  I  |->  ( R `  x
) ) ) ) )
978, 9, 83, 84, 93, 10, 96prdsbascl 13382 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( a `  x
)  e.  V )
9897r19.21bi 2641 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( a `  x )  e.  V
)
99 rpxr 10361 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( r  e.  RR+  ->  r  e. 
RR* )
10099ad2antll 709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
r  e.  RR* )
101100adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR* )
102 blssm 17968 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( E  e.  ( * Met `  V )  /\  ( a `  x )  e.  V  /\  r  e.  RR* )  ->  ( ( a `  x ) ( ball `  E ) r ) 
C_  V )
10391, 98, 101, 102syl3anc 1182 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  C_  V
)
104 eqid 2283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) )  =  ( ( R `
 x )s  ( ( a `  x ) ( ball `  E
) r ) )
105104, 10ressbas2 13199 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a `  x
) ( ball `  E
) r )  C_  V  ->  ( ( a `
 x ) (
ball `  E )
r )  =  (
Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
106103, 105syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
a `  x )
( ball `  E )
r )  =  (
Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
107106ralrimiva 2626 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( ( a `  x ) ( ball `  E ) r )  =  ( Base `  (
( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) )
108 ixpeq2 6830 . . . . . . . . . . . . . . . . . 18  |-  ( A. x  e.  I  (
( a `  x
) ( ball `  E
) r )  =  ( Base `  (
( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) )  ->  X_ x  e.  I  ( (
a `  x )
( ball `  E )
r )  =  X_ x  e.  I  ( Base `  ( ( R `
 x )s  ( ( a `  x ) ( ball `  E
) r ) ) ) )
109107, 108syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  X_ x  e.  I  ( ( a `  x
) ( ball `  E
) r )  = 
X_ x  e.  I 
( Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
11068cbvmptv 4111 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  I  |->  ( R `
 y ) )  =  ( x  e.  I  |->  ( R `  x ) )
111110oveq2i 5869 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) )  =  ( S X_s ( x  e.  I  |->  ( R `  x
) ) )
11225, 111syl6eqr 2333 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  Y  =  ( S
X_s ( y  e.  I  |->  ( R `  y
) ) ) )
113112fveq2d 5529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( dist `  Y
)  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
11419, 113syl5eq 2327 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  D  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
115114fveq2d 5529 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ball `  D
)  =  ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) )
116115proplem3 13593 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  D ) r )  =  ( a (
ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r ) )
117 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
118 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) )
119112fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
12028, 119syl5eq 2327 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
121120adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  B  =  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
12294, 121eleqtrd 2359 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
a  e.  ( Base `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) )
123 rpgt0 10365 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  e.  RR+  ->  0  < 
r )
124123ad2antll 709 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
0  <  r )
125111, 117, 10, 11, 118, 83, 84, 85, 91, 122, 100, 124prdsbl 18037 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  ( dist `  ( S X_s ( y  e.  I  |->  ( R `  y
) ) ) ) ) r )  = 
X_ x  e.  I 
( ( a `  x ) ( ball `  E ) r ) )
126116, 125eqtrd 2315 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( a ( ball `  D ) r )  =  X_ x  e.  I 
( ( a `  x ) ( ball `  E ) r ) )
127 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )  =  ( S
X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
128 ovex 5883 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) )  e.  _V
129128a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) )  e.  _V )
130129ralrimiva 2626 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  ->  A. x  e.  I 
( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) )  e. 
_V )
131 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ( Base `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( Base `  (
( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) )
132127, 67, 83, 84, 130, 131prdsbas3 13380 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  =  X_ x  e.  I 
( Base `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) ) )
133109, 126, 1323eqtr4rd 2326 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  =  ( a (
ball `  D )
r ) )
134133, 133xpeq12d 4714 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )  X.  ( Base `  ( S X_s (
x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) )  =  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )
135134reseq2d 4955 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( D  |`  (
( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x
)s  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )  X.  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) ) ) )  =  ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) ) )
13688, 135eqtrd 2315 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) ) )
137 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( S
X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )  =  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) )
138 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )
139 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )
140 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( (
dist `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  |`  (
( Base `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( ( dist `  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )
141 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )
142128, 80fnmpti 5372 . . . . . . . . . . . . . . . 16  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  Fn  I
143142a1i 10 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  Fn  I )
144 simplrr 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR+ )
145144rpred 10390 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  r  e.  RR )
146 blbnd 26511 . . . . . . . . . . . . . . . . . 18  |-  ( ( E  e.  ( * Met `  V )  /\  ( a `  x )  e.  V  /\  r  e.  RR )  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
14791, 98, 145, 146syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
148 xpeq12 4708 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  =  ( ( a `  x ) ( ball `  E
) r )  /\  y  =  ( (
a `  x )
( ball `  E )
r ) )  -> 
( y  X.  y
)  =  ( ( ( a `  x
) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )
149148anidms 626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
y  X.  y )  =  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )
150149reseq2d 4955 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( E  |`  ( y  X.  y ) )  =  ( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
151 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( TotBnd `
 y )  =  ( TotBnd `  ( (
a `  x )
( ball `  E )
r ) ) )
152150, 151eleq12d 2351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
153 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  ( Bnd `  y )  =  ( Bnd `  (
( a `  x
) ( ball `  E
) r ) ) )
154150, 153eleq12d 2351 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( Bnd `  y )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
155152, 154bibi12d 312 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( ( E  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) )  <->  ( ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) ) )
156155imbi2d 307 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( a `
 x ) (
ball `  E )
r )  ->  (
( ( ph  /\  x  e.  I )  ->  ( ( E  |`  ( y  X.  y
) )  e.  (
TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )  <->  ( ( ph  /\  x  e.  I
)  ->  ( ( E  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )  e.  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) ) ) )
157 prdsbnd2.m . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
y  X.  y ) )  e.  ( TotBnd `  y )  <->  ( E  |`  ( y  X.  y
) )  e.  ( Bnd `  y ) ) )
15886, 156, 157vtocl 2838 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  I )  ->  (
( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  e.  ( TotBnd `  (
( a `  x
) ( ball `  E
) r ) )  <-> 
( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  e.  ( Bnd `  (
( a `  x
) ( ball `  E
) r ) ) ) )
159158adantlr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( E  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) )  e.  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( Bnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
160147, 159mpbird 223 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) ) )
161 eqid 2283 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )  =  ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) )
16279, 161, 128fvmpt 5602 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  I  ->  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x )  =  ( ( R `
 x )s  ( ( a `  x ) ( ball `  E
) r ) ) )
163162adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
)  =  ( ( R `  x )s  ( ( a `  x
) ( ball `  E
) r ) ) )
164163fveq2d 5529 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( dist `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( dist `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
165 eqid 2283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( dist `  ( R `  x
) )  =  (
dist `  ( R `  x ) )
166104, 165ressds 13318 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( a `  x
) ( ball `  E
) r )  e. 
_V  ->  ( dist `  ( R `  x )
)  =  ( dist `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
16786, 166ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  ( dist `  ( R `  x
) )  =  (
dist `  ( ( R `  x )s  (
( a `  x
) ( ball `  E
) r ) ) )
168164, 167syl6eqr 2333 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( dist `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( dist `  ( R `  x
) ) )
169163fveq2d 5529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( Base `  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
170169, 106eqtr4d 2318 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  =  ( ( a `  x ) ( ball `  E
) r ) )
171170, 170xpeq12d 4714 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) )  =  ( ( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )
172168, 171reseq12d 4956 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( ( dist `  ( R `  x )
)  |`  ( ( ( a `  x ) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) ) ) )
17311reseq1i 4951 . . . . . . . . . . . . . . . . . . 19  |-  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  =  ( ( ( dist `  ( R `  x )
)  |`  ( V  X.  V ) )  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )
174 xpss12 4792 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( a `  x ) ( ball `  E ) r ) 
C_  V  /\  (
( a `  x
) ( ball `  E
) r )  C_  V )  ->  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) )  C_  ( V  X.  V
) )
175103, 103, 174syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
( a `  x
) ( ball `  E
) r )  X.  ( ( a `  x ) ( ball `  E ) r ) )  C_  ( V  X.  V ) )
176 resabs1 4984 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) )  C_  ( V  X.  V
)  ->  ( (
( dist `  ( R `  x ) )  |`  ( V  X.  V
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( ( dist `  ( R `  x
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
177175, 176syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
( dist `  ( R `  x ) )  |`  ( V  X.  V
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) )  =  ( ( dist `  ( R `  x
) )  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
178173, 177syl5eq 2327 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  =  ( (
dist `  ( R `  x ) )  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) ) )
179172, 178eqtr4d 2318 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  =  ( E  |`  (
( ( a `  x ) ( ball `  E ) r )  X.  ( ( a `
 x ) (
ball `  E )
r ) ) ) )
180170fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( TotBnd `  ( Base `  (
( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) )  =  (
TotBnd `  ( ( a `
 x ) (
ball `  E )
r ) ) )
181179, 180eleq12d 2351 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( (
( dist `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  |`  (
( Base `  ( (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) `  x
) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  e.  ( TotBnd `  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) )  <->  ( E  |`  ( ( ( a `
 x ) (
ball `  E )
r )  X.  (
( a `  x
) ( ball `  E
) r ) ) )  e.  ( TotBnd `  ( ( a `  x ) ( ball `  E ) r ) ) ) )
182160, 181mpbird 223 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
a  e.  B  /\  r  e.  RR+ ) )  /\  x  e.  I
)  ->  ( ( dist `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  |`  ( ( Base `  ( ( y  e.  I  |->  ( ( R `  y )s  ( ( a `  y
) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) )  X.  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )  e.  ( TotBnd `  ( Base `  ( ( y  e.  I  |->  ( ( R `
 y )s  ( ( a `  y ) ( ball `  (
( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) `  x ) ) ) )
183137, 138, 139, 140, 141, 83, 84, 143, 182prdstotbnd 26518 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  e.  ( TotBnd `  ( Base `  ( S X_s (
y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) ) ) )
18481fveq2i 5528 . . . . . . . . . . . . . . . 16  |-  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) )  =  ( Base `  ( S X_s ( x  e.  I  |->  ( ( R `  x )s  ( ( a `
 x ) (
ball `  E )
r ) ) ) ) )
185184, 133syl5eq 2327 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  =  ( a (
ball `  D )
r ) )
186185fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( TotBnd `  ( Base `  ( S X_s ( y  e.  I  |->  ( ( R `  y )s  ( ( a `
 y ) (
ball `  ( ( dist `  ( R `  y ) )  |`  ( ( Base `  ( R `  y )
)  X.  ( Base `  ( R `  y
) ) ) ) ) r ) ) ) ) ) )  =  ( TotBnd `  (
a ( ball `  D
) r ) ) )
187183, 186eleqtrd 2359 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( dist `  ( S X_s ( y  e.  I  |->  ( ( R `  y
)s  ( ( a `  y ) ( ball `  ( ( dist `  ( R `  y )
)  |`  ( ( Base `  ( R `  y
) )  X.  ( Base `  ( R `  y ) ) ) ) ) r ) ) ) ) )  e.  ( TotBnd `  (
a ( ball `  D
) r ) ) )
188136, 187eqeltrrd 2358 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  B  /\  r  e.  RR+ ) )  -> 
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  e.  ( TotBnd `  (
a ( ball `  D
) r ) ) )
18950, 51, 64, 188syl12anc 1180 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  ( D  |`  ( ( a ( ball `  D
) r )  X.  ( a ( ball `  D ) r ) ) )  e.  (
TotBnd `  ( a (
ball `  D )
r ) ) )
190 totbndss 26501 . . . . . . . . . . 11  |-  ( ( ( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  e.  ( TotBnd `  (
a ( ball `  D
) r ) )  /\  A  C_  (
a ( ball `  D
) r ) )  ->  ( ( D  |`  ( ( a (
ball `  D )
r )  X.  (
a ( ball `  D
) r ) ) )  |`  ( A  X.  A ) )  e.  ( TotBnd `  A )
)
191189, 44, 190syl2anc 642 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  (
( D  |`  (
( a ( ball `  D ) r )  X.  ( a (
ball `  D )
r ) ) )  |`  ( A  X.  A
) )  e.  (
TotBnd `  A ) )
19249, 191eqeltrrd 2358 . . . . . . . . 9  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  ( r  e.  RR  /\  A  C_  ( a ( ball `  D ) r ) ) )  ->  C  e.  ( TotBnd `  A )
)
193192expr 598 . . . . . . . 8  |-  ( ( ( ph  /\  (
a  e.  A  /\  C  e.  ( Bnd `  A ) ) )  /\  r  e.  RR )  ->  ( A  C_  ( a ( ball `  D ) r )  ->  C  e.  (
TotBnd `  A ) ) )
194193rexlimdva 2667 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  -> 
( E. r  e.  RR  A  C_  (
a ( ball `  D
) r )  ->  C  e.  ( TotBnd `  A ) ) )
19543, 194mpd 14 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  C  e.  ( Bnd `  A
) ) )  ->  C  e.  ( TotBnd `  A ) )
196195exp32 588 . . . . 5  |-  ( ph  ->  ( a  e.  A  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) ) )
197196exlimdv 1664 . . . 4  |-  ( ph  ->  ( E. a  a  e.  A  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  ( TotBnd `  A )
) ) )
1986, 197syl5bi 208 . . 3  |-  ( ph  ->  ( A  =/=  (/)  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  ( TotBnd `  A )
) ) )
1995, 198pm2.61dne 2523 . 2  |-  ( ph  ->  ( C  e.  ( Bnd `  A )  ->  C  e.  (
TotBnd `  A ) ) )
2001, 199impbid2 195 1  |-  ( ph  ->  ( C  e.  (
TotBnd `  A )  <->  C  e.  ( Bnd `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077    X. cxp 4687    |` cres 4691    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   X_cixp 6817   Fincfn 6863   RRcr 8736   0cc0 8737   RR*cxr 8866    < clt 8867   RR+crp 10354   Basecbs 13148   ↾s cress 13149   distcds 13217   X_scprds 13346   * Metcxmt 16369   Metcme 16370   ballcbl 16371   TotBndctotbnd 26490   Bndcbnd 26491
This theorem is referenced by:  cnpwstotbnd  26521
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-xmet 16373  df-met 16374  df-bl 16375  df-totbnd 26492  df-bnd 26503
  Copyright terms: Public domain W3C validator