MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsgsum Unicode version

Theorem prdsgsum 15229
Description: Finite commutative sums in a product structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
prdsgsum.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsgsum.b  |-  B  =  ( Base `  R
)
prdsgsum.z  |-  .0.  =  ( 0g `  Y )
prdsgsum.i  |-  ( ph  ->  I  e.  V )
prdsgsum.j  |-  ( ph  ->  J  e.  W )
prdsgsum.s  |-  ( ph  ->  S  e.  X )
prdsgsum.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e. CMnd )
prdsgsum.f  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )
prdsgsum.w  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
Assertion
Ref Expression
prdsgsum  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Distinct variable groups:    x, y, I    x, J, y    x, Y, y    ph, x, y
Allowed substitution hints:    B( x, y)    R( x, y)    S( x, y)    U( x, y)    V( x, y)    W( x, y)    X( x, y)    .0. ( x, y)

Proof of Theorem prdsgsum
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 prdsgsum.y . . . 4  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 eqid 2283 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
3 prdsgsum.s . . . 4  |-  ( ph  ->  S  e.  X )
4 prdsgsum.i . . . 4  |-  ( ph  ->  I  e.  V )
5 prdsgsum.r . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  R  e. CMnd )
6 eqid 2283 . . . . . 6  |-  ( x  e.  I  |->  R )  =  ( x  e.  I  |->  R )
75, 6fmptd 5684 . . . . 5  |-  ( ph  ->  ( x  e.  I  |->  R ) : I -->CMnd )
8 ffn 5389 . . . . 5  |-  ( ( x  e.  I  |->  R ) : I -->CMnd  ->  ( x  e.  I  |->  R )  Fn  I )
97, 8syl 15 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  R )  Fn  I
)
10 prdsgsum.z . . . . 5  |-  .0.  =  ( 0g `  Y )
111, 4, 3, 7prdscmnd 15153 . . . . 5  |-  ( ph  ->  Y  e. CMnd )
12 prdsgsum.j . . . . 5  |-  ( ph  ->  J  e.  W )
13 prdsgsum.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  I  /\  y  e.  J ) )  ->  U  e.  B )
1413anassrs 629 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  U  e.  B )
1514an32s 779 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  J )  /\  x  e.  I )  ->  U  e.  B )
1615ralrimiva 2626 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  A. x  e.  I  U  e.  B )
175ralrimiva 2626 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  I  R  e. CMnd )
18 prdsgsum.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
191, 2, 3, 4, 17, 18prdsbasmpt2 13381 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  I  |->  U )  e.  ( Base `  Y
)  <->  A. x  e.  I  U  e.  B )
)
2019adantr 451 . . . . . . 7  |-  ( (
ph  /\  y  e.  J )  ->  (
( x  e.  I  |->  U )  e.  (
Base `  Y )  <->  A. x  e.  I  U  e.  B ) )
2116, 20mpbird 223 . . . . . 6  |-  ( (
ph  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  ( Base `  Y ) )
22 eqid 2283 . . . . . 6  |-  ( y  e.  J  |->  ( x  e.  I  |->  U ) )  =  ( y  e.  J  |->  ( x  e.  I  |->  U ) )
2321, 22fmptd 5684 . . . . 5  |-  ( ph  ->  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) : J --> ( Base `  Y
) )
24 prdsgsum.w . . . . 5  |-  ( ph  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) ) " ( _V 
\  {  .0.  }
) )  e.  Fin )
252, 10, 11, 12, 23, 24gsumcl 15198 . . . 4  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  e.  ( Base `  Y
) )
261, 2, 3, 4, 9, 25prdsbasfn 13370 . . 3  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  Fn  I )
27 nfcv 2419 . . . . 5  |-  F/_ x Y
28 nfcv 2419 . . . . 5  |-  F/_ x  gsumg
29 nfcv 2419 . . . . . 6  |-  F/_ x J
30 nfmpt1 4109 . . . . . 6  |-  F/_ x
( x  e.  I  |->  U )
3129, 30nfmpt 4108 . . . . 5  |-  F/_ x
( y  e.  J  |->  ( x  e.  I  |->  U ) )
3227, 28, 31nfov 5881 . . . 4  |-  F/_ x
( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )
3332dffn5f 5577 . . 3  |-  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  Fn  I  <->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `  x
) ) )
3426, 33sylib 188 . 2  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) ) )
35 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
3635adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  x  e.  I )
37 eqid 2283 . . . . . . . 8  |-  ( x  e.  I  |->  U )  =  ( x  e.  I  |->  U )
3837fvmpt2 5608 . . . . . . 7  |-  ( ( x  e.  I  /\  U  e.  B )  ->  ( ( x  e.  I  |->  U ) `  x )  =  U )
3936, 14, 38syl2anc 642 . . . . . 6  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
( x  e.  I  |->  U ) `  x
)  =  U )
4039mpteq2dva 4106 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x
) )  =  ( y  e.  J  |->  U ) )
4140oveq2d 5874 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x ) ) )  =  ( R  gsumg  ( y  e.  J  |->  U ) ) )
4211adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  Y  e. CMnd )
43 cmnmnd 15104 . . . . . 6  |-  ( R  e. CMnd  ->  R  e.  Mnd )
445, 43syl 15 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Mnd )
4512adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  J  e.  W )
464adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  V )
473adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  X )
4844, 6fmptd 5684 . . . . . . . 8  |-  ( ph  ->  ( x  e.  I  |->  R ) : I --> Mnd )
4948adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
x  e.  I  |->  R ) : I --> Mnd )
501, 2, 46, 47, 49, 35prdspjmhm 14443 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
a  e.  ( Base `  Y )  |->  ( a `
 x ) )  e.  ( Y MndHom  (
( x  e.  I  |->  R ) `  x
) ) )
516fvmpt2 5608 . . . . . . . 8  |-  ( ( x  e.  I  /\  R  e. CMnd )  ->  ( ( x  e.  I  |->  R ) `  x
)  =  R )
5235, 5, 51syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( x  e.  I  |->  R ) `  x
)  =  R )
5352oveq2d 5874 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( Y MndHom  ( ( x  e.  I  |->  R ) `  x ) )  =  ( Y MndHom  R ) )
5450, 53eleqtrd 2359 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
a  e.  ( Base `  Y )  |->  ( a `
 x ) )  e.  ( Y MndHom  R
) )
5521adantlr 695 . . . . 5  |-  ( ( ( ph  /\  x  e.  I )  /\  y  e.  J )  ->  (
x  e.  I  |->  U )  e.  ( Base `  Y ) )
5624adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( `' ( y  e.  J  |->  ( x  e.  I  |->  U ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
57 fveq1 5524 . . . . 5  |-  ( a  =  ( x  e.  I  |->  U )  -> 
( a `  x
)  =  ( ( x  e.  I  |->  U ) `  x ) )
58 fveq1 5524 . . . . 5  |-  ( a  =  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  ->  (
a `  x )  =  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) )
592, 10, 42, 44, 45, 54, 55, 56, 57, 58gsummhm2 15212 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  ( ( x  e.  I  |->  U ) `  x ) ) )  =  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) )
6041, 59eqtr3d 2317 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( R  gsumg  ( y  e.  J  |->  U ) )  =  ( ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `  x
) )
6160mpteq2dva 4106 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) )  =  ( x  e.  I  |->  ( ( Y 
gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) ) `
 x ) ) )
6234, 61eqtr4d 2318 1  |-  ( ph  ->  ( Y  gsumg  ( y  e.  J  |->  ( x  e.  I  |->  U ) ) )  =  ( x  e.  I  |->  ( R  gsumg  ( y  e.  J  |->  U ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    \ cdif 3149   {csn 3640    e. cmpt 4077   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Fincfn 6863   Basecbs 13148   X_scprds 13346   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361   MndHom cmhm 14413  CMndccmn 15089
This theorem is referenced by:  pwsgsum  15230
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-0g 13404  df-gsum 13405  df-mnd 14367  df-mhm 14415  df-cntz 14793  df-cmn 15091
  Copyright terms: Public domain W3C validator