MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Unicode version

Theorem prdsleval 13654
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y  |-  Y  =  ( S X_s R )
prdsbasmpt.b  |-  B  =  ( Base `  Y
)
prdsbasmpt.s  |-  ( ph  ->  S  e.  V )
prdsbasmpt.i  |-  ( ph  ->  I  e.  W )
prdsbasmpt.r  |-  ( ph  ->  R  Fn  I )
prdsplusgval.f  |-  ( ph  ->  F  e.  B )
prdsplusgval.g  |-  ( ph  ->  G  e.  B )
prdsleval.l  |-  .<_  =  ( le `  Y )
Assertion
Ref Expression
prdsleval  |-  ( ph  ->  ( F  .<_  G  <->  A. x  e.  I  ( F `  x ) ( le
`  ( R `  x ) ) ( G `  x ) ) )
Distinct variable groups:    x, B    x, F    x, G    ph, x    x, I    x, V    x, R    x, S    x, W    x, Y
Allowed substitution hint:    .<_ ( x)

Proof of Theorem prdsleval
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4173 . . 3  |-  ( F 
.<_  G  <->  <. F ,  G >.  e.  .<_  )
2 prdsbasmpt.y . . . . . 6  |-  Y  =  ( S X_s R )
3 prdsbasmpt.s . . . . . 6  |-  ( ph  ->  S  e.  V )
4 prdsbasmpt.r . . . . . . 7  |-  ( ph  ->  R  Fn  I )
5 prdsbasmpt.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
6 fnex 5920 . . . . . . 7  |-  ( ( R  Fn  I  /\  I  e.  W )  ->  R  e.  _V )
74, 5, 6syl2anc 643 . . . . . 6  |-  ( ph  ->  R  e.  _V )
8 prdsbasmpt.b . . . . . 6  |-  B  =  ( Base `  Y
)
9 fndm 5503 . . . . . . 7  |-  ( R  Fn  I  ->  dom  R  =  I )
104, 9syl 16 . . . . . 6  |-  ( ph  ->  dom  R  =  I )
11 prdsleval.l . . . . . 6  |-  .<_  =  ( le `  Y )
122, 3, 7, 8, 10, 11prdsle 13639 . . . . 5  |-  ( ph  -> 
.<_  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
13 vex 2919 . . . . . . . 8  |-  f  e. 
_V
14 vex 2919 . . . . . . . 8  |-  g  e. 
_V
1513, 14prss 3912 . . . . . . 7  |-  ( ( f  e.  B  /\  g  e.  B )  <->  { f ,  g } 
C_  B )
1615anbi1i 677 . . . . . 6  |-  ( ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) )  <->  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) )
1716opabbii 4232 . . . . 5  |-  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }
1812, 17syl6eqr 2454 . . . 4  |-  ( ph  -> 
.<_  =  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) } )
1918eleq2d 2471 . . 3  |-  ( ph  ->  ( <. F ,  G >.  e.  .<_ 
<-> 
<. F ,  G >.  e. 
{ <. f ,  g
>.  |  ( (
f  e.  B  /\  g  e.  B )  /\  A. x  e.  I 
( f `  x
) ( le `  ( R `  x ) ) ( g `  x ) ) } ) )
201, 19syl5bb 249 . 2  |-  ( ph  ->  ( F  .<_  G  <->  <. F ,  G >.  e.  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) } ) )
21 prdsplusgval.f . . 3  |-  ( ph  ->  F  e.  B )
22 prdsplusgval.g . . 3  |-  ( ph  ->  G  e.  B )
23 fveq1 5686 . . . . . 6  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
24 fveq1 5686 . . . . . 6  |-  ( g  =  G  ->  (
g `  x )  =  ( G `  x ) )
2523, 24breqan12d 4187 . . . . 5  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x )  <-> 
( F `  x
) ( le `  ( R `  x ) ) ( G `  x ) ) )
2625ralbidv 2686 . . . 4  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x )  <->  A. x  e.  I 
( F `  x
) ( le `  ( R `  x ) ) ( G `  x ) ) )
2726opelopab2a 4430 . . 3  |-  ( ( F  e.  B  /\  G  e.  B )  ->  ( <. F ,  G >.  e.  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  <->  A. x  e.  I  ( F `  x ) ( le
`  ( R `  x ) ) ( G `  x ) ) )
2821, 22, 27syl2anc 643 . 2  |-  ( ph  ->  ( <. F ,  G >.  e.  { <. f ,  g >.  |  ( ( f  e.  B  /\  g  e.  B
)  /\  A. x  e.  I  ( f `  x ) ( le
`  ( R `  x ) ) ( g `  x ) ) }  <->  A. x  e.  I  ( F `  x ) ( le
`  ( R `  x ) ) ( G `  x ) ) )
2920, 28bitrd 245 1  |-  ( ph  ->  ( F  .<_  G  <->  A. x  e.  I  ( F `  x ) ( le
`  ( R `  x ) ) ( G `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    C_ wss 3280   {cpr 3775   <.cop 3777   class class class wbr 4172   {copab 4225   dom cdm 4837    Fn wfn 5408   ` cfv 5413  (class class class)co 6040   Basecbs 13424   lecple 13491   X_scprds 13624
This theorem is referenced by:  xpsle  13761
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626
  Copyright terms: Public domain W3C validator