MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmet Structured version   Unicode version

Theorem prdsmet 18400
Description: The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
prdsmet.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsmet.b  |-  B  =  ( Base `  Y
)
prdsmet.v  |-  V  =  ( Base `  R
)
prdsmet.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsmet.d  |-  D  =  ( dist `  Y
)
prdsmet.s  |-  ( ph  ->  S  e.  W )
prdsmet.i  |-  ( ph  ->  I  e.  Fin )
prdsmet.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsmet.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
Assertion
Ref Expression
prdsmet  |-  ( ph  ->  D  e.  ( Met `  B ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    B( x)    D( x)    R( x)    S( x)    E( x)    V( x)    W( x)    Y( x)    Z( x)

Proof of Theorem prdsmet
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsmet.y . . 3  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 prdsmet.b . . 3  |-  B  =  ( Base `  Y
)
3 prdsmet.v . . 3  |-  V  =  ( Base `  R
)
4 prdsmet.e . . 3  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
5 prdsmet.d . . 3  |-  D  =  ( dist `  Y
)
6 prdsmet.s . . 3  |-  ( ph  ->  S  e.  W )
7 prdsmet.i . . 3  |-  ( ph  ->  I  e.  Fin )
8 prdsmet.r . . 3  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
9 prdsmet.m . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( Met `  V
) )
10 metxmet 18364 . . . 4  |-  ( E  e.  ( Met `  V
)  ->  E  e.  ( * Met `  V
) )
119, 10syl 16 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
121, 2, 3, 4, 5, 6, 7, 8, 11prdsxmet 18399 . 2  |-  ( ph  ->  D  e.  ( * Met `  B ) )
131, 2, 3, 4, 5, 6, 7, 8, 11prdsdsf 18397 . . . 4  |-  ( ph  ->  D : ( B  X.  B ) --> ( 0 [,]  +oo )
)
14 ffn 5591 . . . 4  |-  ( D : ( B  X.  B ) --> ( 0 [,]  +oo )  ->  D  Fn  ( B  X.  B
) )
1513, 14syl 16 . . 3  |-  ( ph  ->  D  Fn  ( B  X.  B ) )
166adantr 452 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  S  e.  W )
177adantr 452 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  I  e.  Fin )
188ralrimiva 2789 . . . . . . 7  |-  ( ph  ->  A. x  e.  I  R  e.  Z )
1918adantr 452 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I  R  e.  Z )
20 simprl 733 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
f  e.  B )
21 simprr 734 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
g  e.  B )
221, 2, 16, 17, 19, 20, 21, 3, 4, 5prdsdsval3 13707 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  =  sup (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )
231, 2, 16, 17, 19, 3, 20prdsbascl 13705 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( f `  x
)  e.  V )
241, 2, 16, 17, 19, 3, 21prdsbascl 13705 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( g `  x
)  e.  V )
25 r19.26 2838 . . . . . . . . . . 11  |-  ( A. x  e.  I  (
( f `  x
)  e.  V  /\  ( g `  x
)  e.  V )  <-> 
( A. x  e.  I  ( f `  x )  e.  V  /\  A. x  e.  I 
( g `  x
)  e.  V ) )
26 metcl 18362 . . . . . . . . . . . . . . 15  |-  ( ( E  e.  ( Met `  V )  /\  (
f `  x )  e.  V  /\  (
g `  x )  e.  V )  ->  (
( f `  x
) E ( g `
 x ) )  e.  RR )
27263expib 1156 . . . . . . . . . . . . . 14  |-  ( E  e.  ( Met `  V
)  ->  ( (
( f `  x
)  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR ) )
289, 27syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( f `  x )  e.  V  /\  ( g `  x
)  e.  V )  ->  ( ( f `
 x ) E ( g `  x
) )  e.  RR ) )
2928ralimdva 2784 . . . . . . . . . . . 12  |-  ( ph  ->  ( A. x  e.  I  ( ( f `
 x )  e.  V  /\  ( g `
 x )  e.  V )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e.  RR ) )
3029adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( A. x  e.  I  ( ( f `
 x )  e.  V  /\  ( g `
 x )  e.  V )  ->  A. x  e.  I  ( (
f `  x ) E ( g `  x ) )  e.  RR ) )
3125, 30syl5bir 210 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ( A. x  e.  I  ( f `  x )  e.  V  /\  A. x  e.  I 
( g `  x
)  e.  V )  ->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  e.  RR ) )
3223, 24, 31mp2and 661 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  A. x  e.  I 
( ( f `  x ) E ( g `  x ) )  e.  RR )
33 eqid 2436 . . . . . . . . . 10  |-  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )
3433fmpt 5890 . . . . . . . . 9  |-  ( A. x  e.  I  (
( f `  x
) E ( g `
 x ) )  e.  RR  <->  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
3532, 34sylib 189 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) ) : I --> RR )
36 frn 5597 . . . . . . . 8  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) ) : I --> RR  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
3735, 36syl 16 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  C_  RR )
38 0re 9091 . . . . . . . . 9  |-  0  e.  RR
3938a1i 11 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
0  e.  RR )
4039snssd 3943 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  { 0 }  C_  RR )
4137, 40unssd 3523 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR )
42 xrltso 10734 . . . . . . . 8  |-  <  Or  RR*
4342a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  <  Or  RR* )
44 mptfi 7406 . . . . . . . . 9  |-  ( I  e.  Fin  ->  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  e.  Fin )
45 rnfi 7391 . . . . . . . . 9  |-  ( ( x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  e.  Fin  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  e.  Fin )
4617, 44, 453syl 19 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  e.  Fin )
47 snfi 7187 . . . . . . . 8  |-  { 0 }  e.  Fin
48 unfi 7374 . . . . . . . 8  |-  ( ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  e. 
Fin  /\  { 0 }  e.  Fin )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin )
4946, 47, 48sylancl 644 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin )
50 ssun2 3511 . . . . . . . . 9  |-  { 0 }  C_  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )
51 c0ex 9085 . . . . . . . . . 10  |-  0  e.  _V
5251snss 3926 . . . . . . . . 9  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } )  <->  { 0 }  C_  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) )
5350, 52mpbir 201 . . . . . . . 8  |-  0  e.  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )
54 ne0i 3634 . . . . . . . 8  |-  ( 0  e.  ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } )  ->  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  =/=  (/) )
5553, 54mp1i 12 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  =/=  (/) )
56 ressxr 9129 . . . . . . . 8  |-  RR  C_  RR*
5741, 56syl6ss 3360 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  C_  RR* )
58 fisupcl 7472 . . . . . . 7  |-  ( (  <  Or  RR*  /\  (
( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  { 0 } )  e.  Fin  /\  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } )  =/=  (/)  /\  ( ran  ( x  e.  I  |->  ( ( f `  x ) E ( g `  x ) ) )  u.  {
0 } )  C_  RR* ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) )
5943, 49, 55, 57, 58syl13anc 1186 . . . . . 6  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  ( ran  ( x  e.  I  |->  ( ( f `
 x ) E ( g `  x
) ) )  u. 
{ 0 } ) )
6041, 59sseldd 3349 . . . . 5  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  ->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) E ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  )  e.  RR )
6122, 60eqeltrd 2510 . . . 4  |-  ( (
ph  /\  ( f  e.  B  /\  g  e.  B ) )  -> 
( f D g )  e.  RR )
6261ralrimivva 2798 . . 3  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( f D g )  e.  RR )
63 ffnov 6174 . . 3  |-  ( D : ( B  X.  B ) --> RR  <->  ( D  Fn  ( B  X.  B
)  /\  A. f  e.  B  A. g  e.  B  ( f D g )  e.  RR ) )
6415, 62, 63sylanbrc 646 . 2  |-  ( ph  ->  D : ( B  X.  B ) --> RR )
65 ismet2 18363 . 2  |-  ( D  e.  ( Met `  B
)  <->  ( D  e.  ( * Met `  B
)  /\  D :
( B  X.  B
) --> RR ) )
6612, 64, 65sylanbrc 646 1  |-  ( ph  ->  D  e.  ( Met `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705    u. cun 3318    C_ wss 3320   (/)c0 3628   {csn 3814    e. cmpt 4266    Or wor 4502    X. cxp 4876   ran crn 4879    |` cres 4880    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081   Fincfn 7109   supcsup 7445   RRcr 8989   0cc0 8990    +oocpnf 9117   RR*cxr 9119    < clt 9120   [,]cicc 10919   Basecbs 13469   distcds 13538   X_scprds 13669   * Metcxmt 16686   Metcme 16687
This theorem is referenced by:  xpsmet  18412  prdsmslem1  18557  prdsbnd  26502  prdstotbnd  26503  prdsbnd2  26504  repwsmet  26543
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-icc 10923  df-fz 11044  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-hom 13553  df-cco 13554  df-prds 13671  df-xmet 16695  df-met 16696
  Copyright terms: Public domain W3C validator