MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Unicode version

Theorem prdsmndd 14405
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y  |-  Y  =  ( S X_s R )
prdsmndd.i  |-  ( ph  ->  I  e.  W )
prdsmndd.s  |-  ( ph  ->  S  e.  V )
prdsmndd.r  |-  ( ph  ->  R : I --> Mnd )
Assertion
Ref Expression
prdsmndd  |-  ( ph  ->  Y  e.  Mnd )

Proof of Theorem prdsmndd
Dummy variables  a 
b  y  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2284 . 2  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  Y ) )
2 eqidd 2284 . 2  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  Y ) )
3 prdsmndd.y . . . 4  |-  Y  =  ( S X_s R )
4 eqid 2283 . . . 4  |-  ( Base `  Y )  =  (
Base `  Y )
5 eqid 2283 . . . 4  |-  ( +g  `  Y )  =  ( +g  `  Y )
6 prdsmndd.s . . . . . 6  |-  ( ph  ->  S  e.  V )
7 elex 2796 . . . . . 6  |-  ( S  e.  V  ->  S  e.  _V )
86, 7syl 15 . . . . 5  |-  ( ph  ->  S  e.  _V )
98adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  S  e.  _V )
10 prdsmndd.i . . . . . 6  |-  ( ph  ->  I  e.  W )
11 elex 2796 . . . . . 6  |-  ( I  e.  W  ->  I  e.  _V )
1210, 11syl 15 . . . . 5  |-  ( ph  ->  I  e.  _V )
1312adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  I  e.  _V )
14 prdsmndd.r . . . . 5  |-  ( ph  ->  R : I --> Mnd )
1514adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  R : I --> Mnd )
16 simprl 732 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  a  e.  ( Base `  Y
) )
17 simprr 733 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  b  e.  ( Base `  Y
) )
183, 4, 5, 9, 13, 15, 16, 17prdsplusgcl 14403 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )
) )  ->  (
a ( +g  `  Y
) b )  e.  ( Base `  Y
) )
19183impb 1147 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y ) )  ->  ( a ( +g  `  Y ) b )  e.  (
Base `  Y )
)
20 ffvelrn 5663 . . . . . . . 8  |-  ( ( R : I --> Mnd  /\  y  e.  I )  ->  ( R `  y
)  e.  Mnd )
2114, 20sylan 457 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
2221adantlr 695 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  ( R `  y )  e.  Mnd )
238ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  S  e.  _V )
2412ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  I  e.  _V )
25 ffn 5389 . . . . . . . . 9  |-  ( R : I --> Mnd  ->  R  Fn  I )
2614, 25syl 15 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
2726ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  R  Fn  I )
28 simplr1 997 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  a  e.  ( Base `  Y
) )
29 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  y  e.  I )
303, 4, 23, 24, 27, 28, 29prdsbasprj 13371 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
a `  y )  e.  ( Base `  ( R `  y )
) )
31 simplr2 998 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  b  e.  ( Base `  Y
) )
323, 4, 23, 24, 27, 31, 29prdsbasprj 13371 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
b `  y )  e.  ( Base `  ( R `  y )
) )
33 simplr3 999 . . . . . . 7  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  c  e.  ( Base `  Y
) )
343, 4, 23, 24, 27, 33, 29prdsbasprj 13371 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
c `  y )  e.  ( Base `  ( R `  y )
) )
35 eqid 2283 . . . . . . 7  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
36 eqid 2283 . . . . . . 7  |-  ( +g  `  ( R `  y
) )  =  ( +g  `  ( R `
 y ) )
3735, 36mndass 14373 . . . . . 6  |-  ( ( ( R `  y
)  e.  Mnd  /\  ( ( a `  y )  e.  (
Base `  ( R `  y ) )  /\  ( b `  y
)  e.  ( Base `  ( R `  y
) )  /\  (
c `  y )  e.  ( Base `  ( R `  y )
) ) )  -> 
( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) )  =  ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) ) )
3822, 30, 32, 34, 37syl13anc 1184 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
393, 4, 23, 24, 27, 28, 31, 5, 29prdsplusgfval 13373 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a ( +g  `  Y ) b ) `
 y )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( b `
 y ) ) )
4039oveq1d 5873 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( ( a `
 y ) ( +g  `  ( R `
 y ) ) ( b `  y
) ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
413, 4, 23, 24, 27, 31, 33, 5, 29prdsplusgfval 13373 . . . . . 6  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( b ( +g  `  Y ) c ) `
 y )  =  ( ( b `  y ) ( +g  `  ( R `  y
) ) ( c `
 y ) ) )
4241oveq2d 5874 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( a `  y
) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b `  y ) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
4338, 40, 423eqtr4d 2325 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( Base `  Y )  /\  b  e.  ( Base `  Y
)  /\  c  e.  ( Base `  Y )
) )  /\  y  e.  I )  ->  (
( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) )  =  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) )
4443mpteq2dva 4106 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `
 y ) ( +g  `  ( R `
 y ) ) ( c `  y
) ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y
) ) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
458adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  S  e.  _V )
4612adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  I  e.  _V )
4726adantr 451 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
48183adantr3 1116 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) b )  e.  (
Base `  Y )
)
49 simpr3 963 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  c  e.  ( Base `  Y )
)
503, 4, 45, 46, 47, 48, 49, 5prdsplusgval 13372 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( y  e.  I  |->  ( ( ( a ( +g  `  Y ) b ) `  y
) ( +g  `  ( R `  y )
) ( c `  y ) ) ) )
51 simpr1 961 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  a  e.  ( Base `  Y )
)
5214adantr 451 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
53 simpr2 962 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  b  e.  ( Base `  Y )
)
543, 4, 5, 45, 46, 52, 53, 49prdsplusgcl 14403 . . . 4  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( b
( +g  `  Y ) c )  e.  (
Base `  Y )
)
553, 4, 45, 46, 47, 51, 54, 5prdsplusgval 13372 . . 3  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( a
( +g  `  Y ) ( b ( +g  `  Y ) c ) )  =  ( y  e.  I  |->  ( ( a `  y ) ( +g  `  ( R `  y )
) ( ( b ( +g  `  Y
) c ) `  y ) ) ) )
5644, 50, 553eqtr4d 2325 . 2  |-  ( (
ph  /\  ( a  e.  ( Base `  Y
)  /\  b  e.  ( Base `  Y )  /\  c  e.  ( Base `  Y ) ) )  ->  ( (
a ( +g  `  Y
) b ) ( +g  `  Y ) c )  =  ( a ( +g  `  Y
) ( b ( +g  `  Y ) c ) ) )
57 eqid 2283 . . . 4  |-  ( 0g  o.  R )  =  ( 0g  o.  R
)
583, 4, 5, 8, 12, 14, 57prdsidlem 14404 . . 3  |-  ( ph  ->  ( ( 0g  o.  R )  e.  (
Base `  Y )  /\  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) ) )
5958simpld 445 . 2  |-  ( ph  ->  ( 0g  o.  R
)  e.  ( Base `  Y ) )
6058simprd 449 . . . 4  |-  ( ph  ->  A. a  e.  (
Base `  Y )
( ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a  /\  ( a ( +g  `  Y ) ( 0g  o.  R
) )  =  a ) )
6160r19.21bi 2641 . . 3  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( (
( 0g  o.  R
) ( +g  `  Y
) a )  =  a  /\  ( a ( +g  `  Y
) ( 0g  o.  R ) )  =  a ) )
6261simpld 445 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( ( 0g  o.  R ) ( +g  `  Y ) a )  =  a )
6361simprd 449 . 2  |-  ( (
ph  /\  a  e.  ( Base `  Y )
)  ->  ( a
( +g  `  Y ) ( 0g  o.  R
) )  =  a )
641, 2, 19, 56, 59, 62, 63ismndd 14396 1  |-  ( ph  ->  Y  e.  Mnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    e. cmpt 4077    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   X_scprds 13346   0gc0g 13400   Mndcmnd 14361
This theorem is referenced by:  prds0g  14406  pwsmnd  14407  xpsmnd  14412  prdspjmhm  14443  prdsgrpd  14604  prdscmnd  15153  prdsrngd  15395  prdstmdd  17806  dsmm0cl  27206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-0g 13404  df-mnd 14367
  Copyright terms: Public domain W3C validator