MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmulr Unicode version

Theorem prdsmulr 13641
Description: Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbas.p  |-  P  =  ( S X_s R )
prdsbas.s  |-  ( ph  ->  S  e.  V )
prdsbas.r  |-  ( ph  ->  R  e.  W )
prdsbas.b  |-  B  =  ( Base `  P
)
prdsbas.i  |-  ( ph  ->  dom  R  =  I )
prdsmulr.t  |-  .x.  =  ( .r `  P )
Assertion
Ref Expression
prdsmulr  |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
Distinct variable groups:    f, g, x, B    ph, f, g, x    f, I, g, x    P, f, g, x    R, f, g, x    S, f, g, x
Allowed substitution hints:    .x. ( x, f, g)    V( x, f, g)    W( x, f, g)

Proof of Theorem prdsmulr
Dummy variables  a 
c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsbas.p . . 3  |-  P  =  ( S X_s R )
2 eqid 2408 . . 3  |-  ( Base `  S )  =  (
Base `  S )
3 prdsbas.i . . 3  |-  ( ph  ->  dom  R  =  I )
4 prdsbas.s . . . 4  |-  ( ph  ->  S  e.  V )
5 prdsbas.r . . . 4  |-  ( ph  ->  R  e.  W )
6 prdsbas.b . . . 4  |-  B  =  ( Base `  P
)
71, 4, 5, 6, 3prdsbas 13639 . . 3  |-  ( ph  ->  B  =  X_ x  e.  I  ( Base `  ( R `  x
) ) )
8 eqid 2408 . . . 4  |-  ( +g  `  P )  =  ( +g  `  P )
91, 4, 5, 6, 3, 8prdsplusg 13640 . . 3  |-  ( ph  ->  ( +g  `  P
)  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( +g  `  ( R `  x )
) ( g `  x ) ) ) ) )
10 eqidd 2409 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) )
11 eqidd 2409 . . 3  |-  ( ph  ->  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) )  =  ( f  e.  (
Base `  S ) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s
`  ( R `  x ) ) ( g `  x ) ) ) ) )
12 eqidd 2409 . . 3  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
13 eqidd 2409 . . 3  |-  ( ph  ->  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }  =  { <. f ,  g >.  |  ( { f ,  g }  C_  B  /\  A. x  e.  I  ( f `  x ) ( le `  ( R `  x )
) ( g `  x ) ) } )
14 eqidd 2409 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) )  =  ( f  e.  B ,  g  e.  B  |->  sup ( ( ran  ( x  e.  I  |->  ( ( f `  x ) ( dist `  ( R `  x
) ) ( g `
 x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) )
15 eqidd 2409 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) )  =  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) )
16 eqidd 2409 . . 3  |-  ( ph  ->  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) )  =  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) )
171, 2, 3, 7, 9, 10, 11, 12, 13, 14, 15, 16, 4, 5prdsval 13637 . 2  |-  ( ph  ->  P  =  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) ) )
18 prdsmulr.t . 2  |-  .x.  =  ( .r `  P )
19 mulrid 13534 . 2  |-  .r  = Slot  ( .r `  ndx )
20 ovssunirn 6070 . . . . . . . . . . 11  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  ( .r `  ( R `  x ) )
2119strfvss 13446 . . . . . . . . . . . . 13  |-  ( .r
`  ( R `  x ) )  C_  U.
ran  ( R `  x )
22 fvssunirn 5717 . . . . . . . . . . . . . 14  |-  ( R `
 x )  C_  U.
ran  R
23 rnss 5061 . . . . . . . . . . . . . 14  |-  ( ( R `  x ) 
C_  U. ran  R  ->  ran  ( R `  x
)  C_  ran  U. ran  R )
24 uniss 4000 . . . . . . . . . . . . . 14  |-  ( ran  ( R `  x
)  C_  ran  U. ran  R  ->  U. ran  ( R `
 x )  C_  U.
ran  U. ran  R )
2522, 23, 24mp2b 10 . . . . . . . . . . . . 13  |-  U. ran  ( R `  x ) 
C_  U. ran  U. ran  R
2621, 25sstri 3321 . . . . . . . . . . . 12  |-  ( .r
`  ( R `  x ) )  C_  U.
ran  U. ran  R
27 rnss 5061 . . . . . . . . . . . 12  |-  ( ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  R  ->  ran  ( .r `  ( R `  x
) )  C_  ran  U.
ran  U. ran  R )
28 uniss 4000 . . . . . . . . . . . 12  |-  ( ran  ( .r `  ( R `  x )
)  C_  ran  U. ran  U.
ran  R  ->  U. ran  ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R )
2926, 27, 28mp2b 10 . . . . . . . . . . 11  |-  U. ran  ( .r `  ( R `
 x ) ) 
C_  U. ran  U. ran  U.
ran  R
3020, 29sstri 3321 . . . . . . . . . 10  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  C_  U.
ran  U. ran  U. ran  R
31 ovex 6069 . . . . . . . . . . 11  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  e. 
_V
3231elpw 3769 . . . . . . . . . 10  |-  ( ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R  <->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) )  C_  U. ran  U.
ran  U. ran  R )
3330, 32mpbir 201 . . . . . . . . 9  |-  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R
3433a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  I )  ->  (
( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) )  e. 
~P U. ran  U. ran  U.
ran  R )
35 eqid 2408 . . . . . . . 8  |-  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) )  =  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) )
3634, 35fmptd 5856 . . . . . . 7  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R )
37 rnexg 5094 . . . . . . . . . . . 12  |-  ( R  e.  W  ->  ran  R  e.  _V )
38 uniexg 4669 . . . . . . . . . . . 12  |-  ( ran 
R  e.  _V  ->  U.
ran  R  e.  _V )
395, 37, 383syl 19 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  R  e. 
_V )
40 rnexg 5094 . . . . . . . . . . 11  |-  ( U. ran  R  e.  _V  ->  ran  U. ran  R  e.  _V )
41 uniexg 4669 . . . . . . . . . . 11  |-  ( ran  U. ran  R  e.  _V  ->  U. ran  U. ran  R  e.  _V )
4239, 40, 413syl 19 . . . . . . . . . 10  |-  ( ph  ->  U. ran  U. ran  R  e.  _V )
43 rnexg 5094 . . . . . . . . . 10  |-  ( U. ran  U. ran  R  e. 
_V  ->  ran  U. ran  U. ran  R  e.  _V )
44 uniexg 4669 . . . . . . . . . 10  |-  ( ran  U. ran  U. ran  R  e.  _V  ->  U. ran  U. ran  U. ran  R  e. 
_V )
4542, 43, 443syl 19 . . . . . . . . 9  |-  ( ph  ->  U. ran  U. ran  U.
ran  R  e.  _V )
46 pwexg 4347 . . . . . . . . 9  |-  ( U. ran  U. ran  U. ran  R  e.  _V  ->  ~P U.
ran  U. ran  U. ran  R  e.  _V )
4745, 46syl 16 . . . . . . . 8  |-  ( ph  ->  ~P U. ran  U. ran  U. ran  R  e. 
_V )
48 dmexg 5093 . . . . . . . . . 10  |-  ( R  e.  W  ->  dom  R  e.  _V )
495, 48syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  R  e.  _V )
503, 49eqeltrrd 2483 . . . . . . . 8  |-  ( ph  ->  I  e.  _V )
51 elmapg 6994 . . . . . . . 8  |-  ( ( ~P U. ran  U. ran  U. ran  R  e. 
_V  /\  I  e.  _V )  ->  ( ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5247, 50, 51syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) )  e.  ( ~P U. ran  U.
ran  U. ran  R  ^m  I )  <->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) : I --> ~P U. ran  U. ran  U. ran  R ) )
5336, 52mpbird 224 . . . . . 6  |-  ( ph  ->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5453ralrimivw 2754 . . . . 5  |-  ( ph  ->  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
5554ralrimivw 2754 . . . 4  |-  ( ph  ->  A. f  e.  B  A. g  e.  B  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
56 eqid 2408 . . . . 5  |-  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) )
5756fmpt2 6381 . . . 4  |-  ( A. f  e.  B  A. g  e.  B  (
x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) )  e.  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  <->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) ) : ( B  X.  B ) --> ( ~P
U. ran  U. ran  U. ran  R  ^m  I ) )
5855, 57sylib 189 . . 3  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I ) )
59 fvex 5705 . . . . . 6  |-  ( Base `  P )  e.  _V
606, 59eqeltri 2478 . . . . 5  |-  B  e. 
_V
6160, 60xpex 4953 . . . 4  |-  ( B  X.  B )  e. 
_V
62 ovex 6069 . . . 4  |-  ( ~P
U. ran  U. ran  U. ran  R  ^m  I )  e.  _V
63 fex2 5566 . . . 4  |-  ( ( ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B
) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  /\  ( B  X.  B
)  e.  _V  /\  ( ~P U. ran  U. ran  U. ran  R  ^m  I )  e.  _V )  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )  e.  _V )
6461, 62, 63mp3an23 1271 . . 3  |-  ( ( f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) ) : ( B  X.  B ) --> ( ~P U. ran  U. ran  U. ran  R  ^m  I )  ->  (
f  e.  B , 
g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x
) ( .r `  ( R `  x ) ) ( g `  x ) ) ) )  e.  _V )
6558, 64syl 16 . 2  |-  ( ph  ->  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) )  e. 
_V )
66 snsstp3 3915 . . . 4  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }
67 ssun1 3474 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  C_  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )
6866, 67sstri 3321 . . 3  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )
69 ssun1 3474 . . 3  |-  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  C_  (
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) ,  ( +g  `  P
) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r
`  ( R `  x ) ) ( g `  x ) ) ) ) >. }  u.  { <. (Scalar ` 
ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7068, 69sstri 3321 . 2  |-  { <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  C_  ( ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  ( +g  `  P ) >. ,  <. ( .r `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `
 x ) ( .r `  ( R `
 x ) ) ( g `  x
) ) ) )
>. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) ,  ( f  e.  ( Base `  S
) ,  g  e.  B  |->  ( x  e.  I  |->  ( f ( .s `  ( R `
 x ) ) ( g `  x
) ) ) )
>. } )  u.  ( { <. (TopSet `  ndx ) ,  ( Xt_ `  ( TopOpen  o.  R )
) >. ,  <. ( le `  ndx ) ,  { <. f ,  g
>.  |  ( {
f ,  g } 
C_  B  /\  A. x  e.  I  (
f `  x )
( le `  ( R `  x )
) ( g `  x ) ) }
>. ,  <. ( dist `  ndx ) ,  ( f  e.  B , 
g  e.  B  |->  sup ( ( ran  (
x  e.  I  |->  ( ( f `  x
) ( dist `  ( R `  x )
) ( g `  x ) ) )  u.  { 0 } ) ,  RR* ,  <  ) ) >. }  u.  { <. (  Hom  `  ndx ) ,  ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) >. ,  <. (comp ` 
ndx ) ,  ( a  e.  ( B  X.  B ) ,  c  e.  B  |->  ( d  e.  ( c ( f  e.  B ,  g  e.  B  |-> 
X_ x  e.  I 
( ( f `  x ) (  Hom  `  ( R `  x
) ) ( g `
 x ) ) ) ( 2nd `  a
) ) ,  e  e.  ( ( f  e.  B ,  g  e.  B  |->  X_ x  e.  I  ( (
f `  x )
(  Hom  `  ( R `
 x ) ) ( g `  x
) ) ) `  a )  |->  ( x  e.  I  |->  ( ( d `  x ) ( <. ( ( 1st `  a ) `  x
) ,  ( ( 2nd `  a ) `
 x ) >.
(comp `  ( R `  x ) ) ( c `  x ) ) ( e `  x ) ) ) ) ) >. } ) )
7117, 18, 19, 65, 70prdsvallem 13636 1  |-  ( ph  ->  .x.  =  ( f  e.  B ,  g  e.  B  |->  ( x  e.  I  |->  ( ( f `  x ) ( .r `  ( R `  x )
) ( g `  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   _Vcvv 2920    u. cun 3282    C_ wss 3284   ~Pcpw 3763   {csn 3778   {cpr 3779   {ctp 3780   <.cop 3781   U.cuni 3979   class class class wbr 4176   {copab 4229    e. cmpt 4230    X. cxp 4839   dom cdm 4841   ran crn 4842    o. ccom 4845   -->wf 5413   ` cfv 5417  (class class class)co 6044    e. cmpt2 6046   1stc1st 6310   2ndc2nd 6311    ^m cmap 6981   X_cixp 7026   supcsup 7407   0cc0 8950   RR*cxr 9079    < clt 9080   ndxcnx 13425   Basecbs 13428   +g cplusg 13488   .rcmulr 13489  Scalarcsca 13491   .scvsca 13492  TopSetcts 13494   lecple 13495   distcds 13497    Hom chom 13499  compcco 13500   TopOpenctopn 13608   Xt_cpt 13625   X_scprds 13628
This theorem is referenced by:  prdsvsca  13642  prdsle  13643  prdsds  13645  prdstset  13647  prdshom  13648  prdsco  13649  prdsmulrval  13656  prdsmgp  15675
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-ixp 7027  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-fz 11004  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-plusg 13501  df-mulr 13502  df-sca 13504  df-vsca 13505  df-tset 13507  df-ple 13508  df-ds 13510  df-hom 13512  df-cco 13513  df-prds 13630
  Copyright terms: Public domain W3C validator