MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsplusgfval Structured version   Unicode version

Theorem prdsplusgfval 13701
Description: Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y  |-  Y  =  ( S X_s R )
prdsbasmpt.b  |-  B  =  ( Base `  Y
)
prdsbasmpt.s  |-  ( ph  ->  S  e.  V )
prdsbasmpt.i  |-  ( ph  ->  I  e.  W )
prdsbasmpt.r  |-  ( ph  ->  R  Fn  I )
prdsplusgval.f  |-  ( ph  ->  F  e.  B )
prdsplusgval.g  |-  ( ph  ->  G  e.  B )
prdsplusgval.p  |-  .+  =  ( +g  `  Y )
prdsplusgfval.j  |-  ( ph  ->  J  e.  I )
Assertion
Ref Expression
prdsplusgfval  |-  ( ph  ->  ( ( F  .+  G ) `  J
)  =  ( ( F `  J ) ( +g  `  ( R `  J )
) ( G `  J ) ) )

Proof of Theorem prdsplusgfval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsbasmpt.y . . . 4  |-  Y  =  ( S X_s R )
2 prdsbasmpt.b . . . 4  |-  B  =  ( Base `  Y
)
3 prdsbasmpt.s . . . 4  |-  ( ph  ->  S  e.  V )
4 prdsbasmpt.i . . . 4  |-  ( ph  ->  I  e.  W )
5 prdsbasmpt.r . . . 4  |-  ( ph  ->  R  Fn  I )
6 prdsplusgval.f . . . 4  |-  ( ph  ->  F  e.  B )
7 prdsplusgval.g . . . 4  |-  ( ph  ->  G  e.  B )
8 prdsplusgval.p . . . 4  |-  .+  =  ( +g  `  Y )
91, 2, 3, 4, 5, 6, 7, 8prdsplusgval 13700 . . 3  |-  ( ph  ->  ( F  .+  G
)  =  ( x  e.  I  |->  ( ( F `  x ) ( +g  `  ( R `  x )
) ( G `  x ) ) ) )
109fveq1d 5733 . 2  |-  ( ph  ->  ( ( F  .+  G ) `  J
)  =  ( ( x  e.  I  |->  ( ( F `  x
) ( +g  `  ( R `  x )
) ( G `  x ) ) ) `
 J ) )
11 prdsplusgfval.j . . 3  |-  ( ph  ->  J  e.  I )
12 fveq2 5731 . . . . . 6  |-  ( x  =  J  ->  ( R `  x )  =  ( R `  J ) )
1312fveq2d 5735 . . . . 5  |-  ( x  =  J  ->  ( +g  `  ( R `  x ) )  =  ( +g  `  ( R `  J )
) )
14 fveq2 5731 . . . . 5  |-  ( x  =  J  ->  ( F `  x )  =  ( F `  J ) )
15 fveq2 5731 . . . . 5  |-  ( x  =  J  ->  ( G `  x )  =  ( G `  J ) )
1613, 14, 15oveq123d 6105 . . . 4  |-  ( x  =  J  ->  (
( F `  x
) ( +g  `  ( R `  x )
) ( G `  x ) )  =  ( ( F `  J ) ( +g  `  ( R `  J
) ) ( G `
 J ) ) )
17 eqid 2438 . . . 4  |-  ( x  e.  I  |->  ( ( F `  x ) ( +g  `  ( R `  x )
) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `
 x ) ( +g  `  ( R `
 x ) ) ( G `  x
) ) )
18 ovex 6109 . . . 4  |-  ( ( F `  J ) ( +g  `  ( R `  J )
) ( G `  J ) )  e. 
_V
1916, 17, 18fvmpt 5809 . . 3  |-  ( J  e.  I  ->  (
( x  e.  I  |->  ( ( F `  x ) ( +g  `  ( R `  x
) ) ( G `
 x ) ) ) `  J )  =  ( ( F `
 J ) ( +g  `  ( R `
 J ) ) ( G `  J
) ) )
2011, 19syl 16 . 2  |-  ( ph  ->  ( ( x  e.  I  |->  ( ( F `
 x ) ( +g  `  ( R `
 x ) ) ( G `  x
) ) ) `  J )  =  ( ( F `  J
) ( +g  `  ( R `  J )
) ( G `  J ) ) )
2110, 20eqtrd 2470 1  |-  ( ph  ->  ( ( F  .+  G ) `  J
)  =  ( ( F `  J ) ( +g  `  ( R `  J )
) ( G `  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    e. cmpt 4269    Fn wfn 5452   ` cfv 5457  (class class class)co 6084   Basecbs 13474   +g cplusg 13534   X_scprds 13674
This theorem is referenced by:  prdsmndd  14733  prdspjmhm  14771  prdsrngd  15723  prdslmodd  16050  dsmmacl  27198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-hom 13558  df-cco 13559  df-prds 13676
  Copyright terms: Public domain W3C validator