![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prdsplusgval | Unicode version |
Description: Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
prdsbasmpt.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsbasmpt.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsbasmpt.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsbasmpt.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsbasmpt.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsplusgval.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsplusgval.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
prdsplusgval.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
prdsplusgval |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prdsbasmpt.y |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | prdsbasmpt.s |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | prdsbasmpt.r |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | prdsbasmpt.i |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | fnex 5924 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 3, 4, 5 | syl2anc 643 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | prdsbasmpt.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | fndm 5507 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 3, 8 | syl 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | prdsplusgval.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 1, 2, 6, 7, 9, 10 | prdsplusg 13640 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | fveq1 5690 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | fveq1 5690 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 12, 13 | oveqan12d 6063 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | 14 | adantl 453 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | mpteq2dv 4260 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | prdsplusgval.f |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | prdsplusgval.g |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | mptexg 5928 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 4, 19 | syl 16 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 11, 16, 17, 18, 20 | ovmpt2d 6164 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: prdsplusgfval 13655 pwsplusgval 13671 xpsadd 13760 prdsplusgcl 14685 prdsidlem 14686 prdsmndd 14687 prdsinvlem 14885 prdscmnd 15435 prdsrngd 15677 prdslmodd 16004 prdstmdd 18110 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2389 ax-rep 4284 ax-sep 4294 ax-nul 4302 ax-pow 4341 ax-pr 4367 ax-un 4664 ax-cnex 9006 ax-resscn 9007 ax-1cn 9008 ax-icn 9009 ax-addcl 9010 ax-addrcl 9011 ax-mulcl 9012 ax-mulrcl 9013 ax-mulcom 9014 ax-addass 9015 ax-mulass 9016 ax-distr 9017 ax-i2m1 9018 ax-1ne0 9019 ax-1rid 9020 ax-rnegex 9021 ax-rrecex 9022 ax-cnre 9023 ax-pre-lttri 9024 ax-pre-lttrn 9025 ax-pre-ltadd 9026 ax-pre-mulgt0 9027 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2262 df-mo 2263 df-clab 2395 df-cleq 2401 df-clel 2404 df-nfc 2533 df-ne 2573 df-nel 2574 df-ral 2675 df-rex 2676 df-reu 2677 df-rab 2679 df-v 2922 df-sbc 3126 df-csb 3216 df-dif 3287 df-un 3289 df-in 3291 df-ss 3298 df-pss 3300 df-nul 3593 df-if 3704 df-pw 3765 df-sn 3784 df-pr 3785 df-tp 3786 df-op 3787 df-uni 3980 df-int 4015 df-iun 4059 df-br 4177 df-opab 4231 df-mpt 4232 df-tr 4267 df-eprel 4458 df-id 4462 df-po 4467 df-so 4468 df-fr 4505 df-we 4507 df-ord 4548 df-on 4549 df-lim 4550 df-suc 4551 df-om 4809 df-xp 4847 df-rel 4848 df-cnv 4849 df-co 4850 df-dm 4851 df-rn 4852 df-res 4853 df-ima 4854 df-iota 5381 df-fun 5419 df-fn 5420 df-f 5421 df-f1 5422 df-fo 5423 df-f1o 5424 df-fv 5425 df-ov 6047 df-oprab 6048 df-mpt2 6049 df-1st 6312 df-2nd 6313 df-riota 6512 df-recs 6596 df-rdg 6631 df-1o 6687 df-oadd 6691 df-er 6868 df-map 6983 df-ixp 7027 df-en 7073 df-dom 7074 df-sdom 7075 df-fin 7076 df-sup 7408 df-pnf 9082 df-mnf 9083 df-xr 9084 df-ltxr 9085 df-le 9086 df-sub 9253 df-neg 9254 df-nn 9961 df-2 10018 df-3 10019 df-4 10020 df-5 10021 df-6 10022 df-7 10023 df-8 10024 df-9 10025 df-10 10026 df-n0 10182 df-z 10243 df-dec 10343 df-uz 10449 df-fz 11004 df-struct 13430 df-ndx 13431 df-slot 13432 df-base 13433 df-plusg 13501 df-mulr 13502 df-sca 13504 df-vsca 13505 df-tset 13507 df-ple 13508 df-ds 13510 df-hom 13512 df-cco 13513 df-prds 13630 |
Copyright terms: Public domain | W3C validator |