MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsrngd Unicode version

Theorem prdsrngd 15645
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsrngd.y  |-  Y  =  ( S X_s R )
prdsrngd.i  |-  ( ph  ->  I  e.  W )
prdsrngd.s  |-  ( ph  ->  S  e.  V )
prdsrngd.r  |-  ( ph  ->  R : I --> Ring )
Assertion
Ref Expression
prdsrngd  |-  ( ph  ->  Y  e.  Ring )

Proof of Theorem prdsrngd
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsrngd.y . . 3  |-  Y  =  ( S X_s R )
2 prdsrngd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdsrngd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdsrngd.r . . . 4  |-  ( ph  ->  R : I --> Ring )
5 rnggrp 15596 . . . . 5  |-  ( x  e.  Ring  ->  x  e. 
Grp )
65ssriv 3295 . . . 4  |-  Ring  C_  Grp
7 fss 5539 . . . 4  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Grp )  ->  R : I --> Grp )
84, 6, 7sylancl 644 . . 3  |-  ( ph  ->  R : I --> Grp )
91, 2, 3, 8prdsgrpd 14854 . 2  |-  ( ph  ->  Y  e.  Grp )
10 eqid 2387 . . . 4  |-  ( S
X_s (mulGrp  o.  R )
)  =  ( S
X_s (mulGrp  o.  R )
)
11 mgpf 15602 . . . . 5  |-  (mulGrp  |`  Ring ) : Ring --> Mnd
12 fco2 5541 . . . . 5  |-  ( ( (mulGrp  |`  Ring ) : Ring --> Mnd 
/\  R : I -->
Ring )  ->  (mulGrp  o.  R ) : I --> Mnd )
1311, 4, 12sylancr 645 . . . 4  |-  ( ph  ->  (mulGrp  o.  R ) : I --> Mnd )
1410, 2, 3, 13prdsmndd 14655 . . 3  |-  ( ph  ->  ( S X_s (mulGrp  o.  R )
)  e.  Mnd )
15 eqidd 2388 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (mulGrp `  Y ) ) )
16 eqid 2387 . . . . . 6  |-  (mulGrp `  Y )  =  (mulGrp `  Y )
17 ffn 5531 . . . . . . 7  |-  ( R : I --> Ring  ->  R  Fn  I )
184, 17syl 16 . . . . . 6  |-  ( ph  ->  R  Fn  I )
191, 16, 10, 2, 3, 18prdsmgp 15643 . . . . 5  |-  ( ph  ->  ( ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) )  /\  ( +g  `  (mulGrp `  Y
) )  =  ( +g  `  ( S
X_s (mulGrp  o.  R )
) ) ) )
2019simpld 446 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) ) )
2119simprd 450 . . . . 5  |-  ( ph  ->  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  ( S X_s (mulGrp  o.  R )
) ) )
2221proplem3 13843 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Y ) )  /\  y  e.  ( Base `  (mulGrp `  Y )
) ) )  -> 
( x ( +g  `  (mulGrp `  Y )
) y )  =  ( x ( +g  `  ( S X_s (mulGrp  o.  R )
) ) y ) )
2315, 20, 22mndpropd 14648 . . 3  |-  ( ph  ->  ( (mulGrp `  Y
)  e.  Mnd  <->  ( S X_s (mulGrp 
o.  R ) )  e.  Mnd ) )
2414, 23mpbird 224 . 2  |-  ( ph  ->  (mulGrp `  Y )  e.  Mnd )
254adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Ring )
2625ffvelrnda 5809 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  ( R `  w )  e.  Ring )
27 eqid 2387 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
283adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  S  e.  V )
2928adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  S  e.  V )
302adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  I  e.  W )
3130adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  I  e.  W )
3218adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
3332adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  R  Fn  I )
34 simplr1 999 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  x  e.  ( Base `  Y
) )
35 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  w  e.  I )
361, 27, 29, 31, 33, 34, 35prdsbasprj 13621 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
x `  w )  e.  ( Base `  ( R `  w )
) )
37 simpr2 964 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  y  e.  ( Base `  Y )
)
3837adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  y  e.  ( Base `  Y
) )
391, 27, 29, 31, 33, 38, 35prdsbasprj 13621 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
y `  w )  e.  ( Base `  ( R `  w )
) )
40 simpr3 965 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  z  e.  ( Base `  Y )
)
4140adantr 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  z  e.  ( Base `  Y
) )
421, 27, 29, 31, 33, 41, 35prdsbasprj 13621 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
z `  w )  e.  ( Base `  ( R `  w )
) )
43 eqid 2387 . . . . . . . . 9  |-  ( Base `  ( R `  w
) )  =  (
Base `  ( R `  w ) )
44 eqid 2387 . . . . . . . . 9  |-  ( +g  `  ( R `  w
) )  =  ( +g  `  ( R `
 w ) )
45 eqid 2387 . . . . . . . . 9  |-  ( .r
`  ( R `  w ) )  =  ( .r `  ( R `  w )
)
4643, 44, 45rngdi 15609 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
x `  w )
( .r `  ( R `  w )
) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
4726, 36, 39, 42, 46syl13anc 1186 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
48 eqid 2387 . . . . . . . . 9  |-  ( +g  `  Y )  =  ( +g  `  Y )
491, 27, 29, 31, 33, 38, 41, 48, 35prdsplusgfval 13623 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( +g  `  Y ) z ) `
 w )  =  ( ( y `  w ) ( +g  `  ( R `  w
) ) ( z `
 w ) ) )
5049oveq2d 6036 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y `  w
) ( +g  `  ( R `  w )
) ( z `  w ) ) ) )
51 eqid 2387 . . . . . . . . 9  |-  ( .r
`  Y )  =  ( .r `  Y
)
521, 27, 29, 31, 33, 34, 38, 51, 35prdsmulrfval 13625 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) y ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) )
531, 27, 29, 31, 33, 34, 41, 51, 35prdsmulrfval 13625 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) z ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
5452, 53oveq12d 6038 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) y ) `  w
) ( +g  `  ( R `  w )
) ( ( x ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
5547, 50, 543eqtr4d 2429 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) )
5655mpteq2dva 4236 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( x `  w ) ( .r `  ( R `  w )
) ( ( y ( +g  `  Y
) z ) `  w ) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y ) y ) `
 w ) ( +g  `  ( R `
 w ) ) ( ( x ( .r `  Y ) z ) `  w
) ) ) )
57 simpr1 963 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  x  e.  ( Base `  Y )
)
58 rngmnd 15600 . . . . . . . . . 10  |-  ( x  e.  Ring  ->  x  e. 
Mnd )
5958ssriv 3295 . . . . . . . . 9  |-  Ring  C_  Mnd
60 fss 5539 . . . . . . . . 9  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Mnd )  ->  R : I --> Mnd )
614, 59, 60sylancl 644 . . . . . . . 8  |-  ( ph  ->  R : I --> Mnd )
6261adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
631, 27, 48, 28, 30, 62, 37, 40prdsplusgcl 14653 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( +g  `  Y ) z )  e.  (
Base `  Y )
)
641, 27, 28, 30, 32, 57, 63, 51prdsmulrval 13624 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( w  e.  I  |->  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y ( +g  `  Y ) z ) `
 w ) ) ) )
651, 27, 51, 28, 30, 25, 57, 37prdsmulrcl 15644 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) y )  e.  ( Base `  Y
) )
661, 27, 51, 28, 30, 25, 57, 40prdsmulrcl 15644 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) z )  e.  ( Base `  Y
) )
671, 27, 28, 30, 32, 65, 66, 48prdsplusgval 13622 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) y ) ( +g  `  Y
) ( x ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) ) )
6856, 64, 673eqtr4d 2429 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) ) )
6943, 44, 45rngdir 15610 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
( x `  w
) ( +g  `  ( R `  w )
) ( y `  w ) ) ( .r `  ( R `
 w ) ) ( z `  w
) )  =  ( ( ( x `  w ) ( .r
`  ( R `  w ) ) ( z `  w ) ) ( +g  `  ( R `  w )
) ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ) )
7026, 36, 39, 42, 69syl13anc 1186 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) ( .r `  ( R `  w )
) ( z `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
711, 27, 29, 31, 33, 34, 38, 48, 35prdsplusgfval 13623 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( +g  `  Y ) y ) `
 w )  =  ( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) )
7271oveq1d 6035 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x `
 w ) ( +g  `  ( R `
 w ) ) ( y `  w
) ) ( .r
`  ( R `  w ) ) ( z `  w ) ) )
731, 27, 29, 31, 33, 38, 41, 51, 35prdsmulrfval 13625 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( .r
`  Y ) z ) `  w )  =  ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
7453, 73oveq12d 6038 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) z ) `  w
) ( +g  `  ( R `  w )
) ( ( y ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
7570, 72, 743eqtr4d 2429 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) )
7675mpteq2dva 4236 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
771, 27, 48, 28, 30, 62, 57, 37prdsplusgcl 14653 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( +g  `  Y ) y )  e.  (
Base `  Y )
)
781, 27, 28, 30, 32, 77, 40, 51prdsmulrval 13624 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) ) ) )
791, 27, 51, 28, 30, 25, 37, 40prdsmulrcl 15644 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( .r `  Y
) z )  e.  ( Base `  Y
) )
801, 27, 28, 30, 32, 66, 79, 48prdsplusgval 13622 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
8176, 78, 803eqtr4d 2429 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) )
8268, 81jca 519 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8382ralrimivvva 2742 . 2  |-  ( ph  ->  A. x  e.  (
Base `  Y ) A. y  e.  ( Base `  Y ) A. z  e.  ( Base `  Y ) ( ( x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8427, 16, 48, 51isrng 15595 . 2  |-  ( Y  e.  Ring  <->  ( Y  e. 
Grp  /\  (mulGrp `  Y
)  e.  Mnd  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) A. z  e.  ( Base `  Y
) ( ( x ( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) )  /\  ( ( x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) ) ) )
859, 24, 83, 84syl3anbrc 1138 1  |-  ( ph  ->  Y  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2649    C_ wss 3263    e. cmpt 4207    |` cres 4820    o. ccom 4822    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   Basecbs 13396   +g cplusg 13456   .rcmulr 13457   X_scprds 13596   Mndcmnd 14611   Grpcgrp 14612  mulGrpcmgp 15575   Ringcrg 15587
This theorem is referenced by:  prdscrngd  15646  pwsrng  15648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-hom 13480  df-cco 13481  df-prds 13598  df-0g 13654  df-mnd 14617  df-grp 14739  df-minusg 14740  df-mgp 15576  df-rng 15590
  Copyright terms: Public domain W3C validator