MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsrngd Structured version   Unicode version

Theorem prdsrngd 15723
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsrngd.y  |-  Y  =  ( S X_s R )
prdsrngd.i  |-  ( ph  ->  I  e.  W )
prdsrngd.s  |-  ( ph  ->  S  e.  V )
prdsrngd.r  |-  ( ph  ->  R : I --> Ring )
Assertion
Ref Expression
prdsrngd  |-  ( ph  ->  Y  e.  Ring )

Proof of Theorem prdsrngd
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsrngd.y . . 3  |-  Y  =  ( S X_s R )
2 prdsrngd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdsrngd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdsrngd.r . . . 4  |-  ( ph  ->  R : I --> Ring )
5 rnggrp 15674 . . . . 5  |-  ( x  e.  Ring  ->  x  e. 
Grp )
65ssriv 3354 . . . 4  |-  Ring  C_  Grp
7 fss 5602 . . . 4  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Grp )  ->  R : I --> Grp )
84, 6, 7sylancl 645 . . 3  |-  ( ph  ->  R : I --> Grp )
91, 2, 3, 8prdsgrpd 14932 . 2  |-  ( ph  ->  Y  e.  Grp )
10 eqid 2438 . . . 4  |-  ( S
X_s (mulGrp  o.  R )
)  =  ( S
X_s (mulGrp  o.  R )
)
11 mgpf 15680 . . . . 5  |-  (mulGrp  |`  Ring ) : Ring --> Mnd
12 fco2 5604 . . . . 5  |-  ( ( (mulGrp  |`  Ring ) : Ring --> Mnd 
/\  R : I -->
Ring )  ->  (mulGrp  o.  R ) : I --> Mnd )
1311, 4, 12sylancr 646 . . . 4  |-  ( ph  ->  (mulGrp  o.  R ) : I --> Mnd )
1410, 2, 3, 13prdsmndd 14733 . . 3  |-  ( ph  ->  ( S X_s (mulGrp  o.  R )
)  e.  Mnd )
15 eqidd 2439 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  (mulGrp `  Y ) ) )
16 eqid 2438 . . . . . 6  |-  (mulGrp `  Y )  =  (mulGrp `  Y )
17 ffn 5594 . . . . . . 7  |-  ( R : I --> Ring  ->  R  Fn  I )
184, 17syl 16 . . . . . 6  |-  ( ph  ->  R  Fn  I )
191, 16, 10, 2, 3, 18prdsmgp 15721 . . . . 5  |-  ( ph  ->  ( ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) )  /\  ( +g  `  (mulGrp `  Y
) )  =  ( +g  `  ( S
X_s (mulGrp  o.  R )
) ) ) )
2019simpld 447 . . . 4  |-  ( ph  ->  ( Base `  (mulGrp `  Y ) )  =  ( Base `  ( S X_s (mulGrp  o.  R )
) ) )
2119simprd 451 . . . . 5  |-  ( ph  ->  ( +g  `  (mulGrp `  Y ) )  =  ( +g  `  ( S X_s (mulGrp  o.  R )
) ) )
2221proplem3 13921 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  (mulGrp `  Y ) )  /\  y  e.  ( Base `  (mulGrp `  Y )
) ) )  -> 
( x ( +g  `  (mulGrp `  Y )
) y )  =  ( x ( +g  `  ( S X_s (mulGrp  o.  R )
) ) y ) )
2315, 20, 22mndpropd 14726 . . 3  |-  ( ph  ->  ( (mulGrp `  Y
)  e.  Mnd  <->  ( S X_s (mulGrp 
o.  R ) )  e.  Mnd ) )
2414, 23mpbird 225 . 2  |-  ( ph  ->  (mulGrp `  Y )  e.  Mnd )
254adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Ring )
2625ffvelrnda 5873 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  ( R `  w )  e.  Ring )
27 eqid 2438 . . . . . . . . 9  |-  ( Base `  Y )  =  (
Base `  Y )
283adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  S  e.  V )
2928adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  S  e.  V )
302adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  I  e.  W )
3130adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  I  e.  W )
3218adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R  Fn  I )
3332adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  R  Fn  I )
34 simplr1 1000 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  x  e.  ( Base `  Y
) )
35 simpr 449 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  w  e.  I )
361, 27, 29, 31, 33, 34, 35prdsbasprj 13699 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
x `  w )  e.  ( Base `  ( R `  w )
) )
37 simpr2 965 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  y  e.  ( Base `  Y )
)
3837adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  y  e.  ( Base `  Y
) )
391, 27, 29, 31, 33, 38, 35prdsbasprj 13699 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
y `  w )  e.  ( Base `  ( R `  w )
) )
40 simpr3 966 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  z  e.  ( Base `  Y )
)
4140adantr 453 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  z  e.  ( Base `  Y
) )
421, 27, 29, 31, 33, 41, 35prdsbasprj 13699 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
z `  w )  e.  ( Base `  ( R `  w )
) )
43 eqid 2438 . . . . . . . . 9  |-  ( Base `  ( R `  w
) )  =  (
Base `  ( R `  w ) )
44 eqid 2438 . . . . . . . . 9  |-  ( +g  `  ( R `  w
) )  =  ( +g  `  ( R `
 w ) )
45 eqid 2438 . . . . . . . . 9  |-  ( .r
`  ( R `  w ) )  =  ( .r `  ( R `  w )
)
4643, 44, 45rngdi 15687 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
x `  w )
( .r `  ( R `  w )
) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
4726, 36, 39, 42, 46syl13anc 1187 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y `
 w ) ( +g  `  ( R `
 w ) ) ( z `  w
) ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
48 eqid 2438 . . . . . . . . 9  |-  ( +g  `  Y )  =  ( +g  `  Y )
491, 27, 29, 31, 33, 38, 41, 48, 35prdsplusgfval 13701 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( +g  `  Y ) z ) `
 w )  =  ( ( y `  w ) ( +g  `  ( R `  w
) ) ( z `
 w ) ) )
5049oveq2d 6100 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y `  w
) ( +g  `  ( R `  w )
) ( z `  w ) ) ) )
51 eqid 2438 . . . . . . . . 9  |-  ( .r
`  Y )  =  ( .r `  Y
)
521, 27, 29, 31, 33, 34, 38, 51, 35prdsmulrfval 13703 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) y ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) )
531, 27, 29, 31, 33, 34, 41, 51, 35prdsmulrfval 13703 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( .r
`  Y ) z ) `  w )  =  ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
5452, 53oveq12d 6102 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) y ) `  w
) ( +g  `  ( R `  w )
) ( ( x ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( y `  w
) ) ( +g  `  ( R `  w
) ) ( ( x `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
5547, 50, 543eqtr4d 2480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x `  w
) ( .r `  ( R `  w ) ) ( ( y ( +g  `  Y
) z ) `  w ) )  =  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) )
5655mpteq2dva 4298 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( x `  w ) ( .r `  ( R `  w )
) ( ( y ( +g  `  Y
) z ) `  w ) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y ) y ) `
 w ) ( +g  `  ( R `
 w ) ) ( ( x ( .r `  Y ) z ) `  w
) ) ) )
57 simpr1 964 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  x  e.  ( Base `  Y )
)
58 rngmnd 15678 . . . . . . . . . 10  |-  ( x  e.  Ring  ->  x  e. 
Mnd )
5958ssriv 3354 . . . . . . . . 9  |-  Ring  C_  Mnd
60 fss 5602 . . . . . . . . 9  |-  ( ( R : I --> Ring  /\  Ring  C_ 
Mnd )  ->  R : I --> Mnd )
614, 59, 60sylancl 645 . . . . . . . 8  |-  ( ph  ->  R : I --> Mnd )
6261adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  R :
I --> Mnd )
631, 27, 48, 28, 30, 62, 37, 40prdsplusgcl 14731 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( +g  `  Y ) z )  e.  (
Base `  Y )
)
641, 27, 28, 30, 32, 57, 63, 51prdsmulrval 13702 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( w  e.  I  |->  ( ( x `  w ) ( .r
`  ( R `  w ) ) ( ( y ( +g  `  Y ) z ) `
 w ) ) ) )
651, 27, 51, 28, 30, 25, 57, 37prdsmulrcl 15722 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) y )  e.  ( Base `  Y
) )
661, 27, 51, 28, 30, 25, 57, 40prdsmulrcl 15722 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) z )  e.  ( Base `  Y
) )
671, 27, 28, 30, 32, 65, 66, 48prdsplusgval 13700 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) y ) ( +g  `  Y
) ( x ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) y ) `  w ) ( +g  `  ( R `  w
) ) ( ( x ( .r `  Y ) z ) `
 w ) ) ) )
6856, 64, 673eqtr4d 2480 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) ) )
6943, 44, 45rngdir 15688 . . . . . . . 8  |-  ( ( ( R `  w
)  e.  Ring  /\  (
( x `  w
)  e.  ( Base `  ( R `  w
) )  /\  (
y `  w )  e.  ( Base `  ( R `  w )
)  /\  ( z `  w )  e.  (
Base `  ( R `  w ) ) ) )  ->  ( (
( x `  w
) ( +g  `  ( R `  w )
) ( y `  w ) ) ( .r `  ( R `
 w ) ) ( z `  w
) )  =  ( ( ( x `  w ) ( .r
`  ( R `  w ) ) ( z `  w ) ) ( +g  `  ( R `  w )
) ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ) )
7026, 36, 39, 42, 69syl13anc 1187 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) ( .r `  ( R `  w )
) ( z `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
711, 27, 29, 31, 33, 34, 38, 48, 35prdsplusgfval 13701 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( x ( +g  `  Y ) y ) `
 w )  =  ( ( x `  w ) ( +g  `  ( R `  w
) ) ( y `
 w ) ) )
7271oveq1d 6099 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x `
 w ) ( +g  `  ( R `
 w ) ) ( y `  w
) ) ( .r
`  ( R `  w ) ) ( z `  w ) ) )
731, 27, 29, 31, 33, 38, 41, 51, 35prdsmulrfval 13703 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( y ( .r
`  Y ) z ) `  w )  =  ( ( y `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )
7453, 73oveq12d 6102 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( .r `  Y ) z ) `  w
) ( +g  `  ( R `  w )
) ( ( y ( .r `  Y
) z ) `  w ) )  =  ( ( ( x `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) ( +g  `  ( R `  w
) ) ( ( y `  w ) ( .r `  ( R `  w )
) ( z `  w ) ) ) )
7570, 72, 743eqtr4d 2480 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( Base `  Y )  /\  y  e.  ( Base `  Y
)  /\  z  e.  ( Base `  Y )
) )  /\  w  e.  I )  ->  (
( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) )  =  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) )
7675mpteq2dva 4298 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `
 w ) ( .r `  ( R `
 w ) ) ( z `  w
) ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
771, 27, 48, 28, 30, 62, 57, 37prdsplusgcl 14731 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( x
( +g  `  Y ) y )  e.  (
Base `  Y )
)
781, 27, 28, 30, 32, 77, 40, 51prdsmulrval 13702 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( w  e.  I  |->  ( ( ( x ( +g  `  Y ) y ) `  w
) ( .r `  ( R `  w ) ) ( z `  w ) ) ) )
791, 27, 51, 28, 30, 25, 37, 40prdsmulrcl 15722 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( y
( .r `  Y
) z )  e.  ( Base `  Y
) )
801, 27, 28, 30, 32, 66, 79, 48prdsplusgval 13700 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) )  =  ( w  e.  I  |->  ( ( ( x ( .r `  Y
) z ) `  w ) ( +g  `  ( R `  w
) ) ( ( y ( .r `  Y ) z ) `
 w ) ) ) )
8176, 78, 803eqtr4d 2480 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) )
8268, 81jca 520 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  Y
)  /\  y  e.  ( Base `  Y )  /\  z  e.  ( Base `  Y ) ) )  ->  ( (
x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8382ralrimivvva 2801 . 2  |-  ( ph  ->  A. x  e.  (
Base `  Y ) A. y  e.  ( Base `  Y ) A. z  e.  ( Base `  Y ) ( ( x ( .r `  Y ) ( y ( +g  `  Y
) z ) )  =  ( ( x ( .r `  Y
) y ) ( +g  `  Y ) ( x ( .r
`  Y ) z ) )  /\  (
( x ( +g  `  Y ) y ) ( .r `  Y
) z )  =  ( ( x ( .r `  Y ) z ) ( +g  `  Y ) ( y ( .r `  Y
) z ) ) ) )
8427, 16, 48, 51isrng 15673 . 2  |-  ( Y  e.  Ring  <->  ( Y  e. 
Grp  /\  (mulGrp `  Y
)  e.  Mnd  /\  A. x  e.  ( Base `  Y ) A. y  e.  ( Base `  Y
) A. z  e.  ( Base `  Y
) ( ( x ( .r `  Y
) ( y ( +g  `  Y ) z ) )  =  ( ( x ( .r `  Y ) y ) ( +g  `  Y ) ( x ( .r `  Y
) z ) )  /\  ( ( x ( +g  `  Y
) y ) ( .r `  Y ) z )  =  ( ( x ( .r
`  Y ) z ) ( +g  `  Y
) ( y ( .r `  Y ) z ) ) ) ) )
859, 24, 83, 84syl3anbrc 1139 1  |-  ( ph  ->  Y  e.  Ring )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322    e. cmpt 4269    |` cres 4883    o. ccom 4885    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084   Basecbs 13474   +g cplusg 13534   .rcmulr 13535   X_scprds 13674   Mndcmnd 14689   Grpcgrp 14690  mulGrpcmgp 15653   Ringcrg 15665
This theorem is referenced by:  prdscrngd  15724  pwsrng  15726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-fz 11049  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-plusg 13547  df-mulr 13548  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-hom 13558  df-cco 13559  df-prds 13676  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-mgp 15654  df-rng 15668
  Copyright terms: Public domain W3C validator