MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstgpd Unicode version

Theorem prdstgpd 18075
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstgpd.y  |-  Y  =  ( S X_s R )
prdstgpd.i  |-  ( ph  ->  I  e.  W )
prdstgpd.s  |-  ( ph  ->  S  e.  V )
prdstgpd.r  |-  ( ph  ->  R : I --> TopGrp )
Assertion
Ref Expression
prdstgpd  |-  ( ph  ->  Y  e.  TopGrp )

Proof of Theorem prdstgpd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstgpd.y . . 3  |-  Y  =  ( S X_s R )
2 prdstgpd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdstgpd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdstgpd.r . . . 4  |-  ( ph  ->  R : I --> TopGrp )
5 tgpgrp 18029 . . . . 5  |-  ( x  e.  TopGrp  ->  x  e.  Grp )
65ssriv 3295 . . . 4  |-  TopGrp  C_  Grp
7 fss 5539 . . . 4  |-  ( ( R : I --> TopGrp  /\  TopGrp  C_  Grp )  ->  R :
I --> Grp )
84, 6, 7sylancl 644 . . 3  |-  ( ph  ->  R : I --> Grp )
91, 2, 3, 8prdsgrpd 14854 . 2  |-  ( ph  ->  Y  e.  Grp )
10 tgptmd 18030 . . . . 5  |-  ( x  e.  TopGrp  ->  x  e. TopMnd )
1110ssriv 3295 . . . 4  |-  TopGrp  C_ TopMnd
12 fss 5539 . . . 4  |-  ( ( R : I --> TopGrp  /\  TopGrp  C_ TopMnd )  ->  R : I -->TopMnd )
134, 11, 12sylancl 644 . . 3  |-  ( ph  ->  R : I -->TopMnd )
141, 2, 3, 13prdstmdd 18074 . 2  |-  ( ph  ->  Y  e. TopMnd )
15 eqid 2387 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
16 eqid 2387 . . . . . . . 8  |-  ( inv g `  Y )  =  ( inv g `  Y )
1715, 16grpinvf 14776 . . . . . . 7  |-  ( Y  e.  Grp  ->  ( inv g `  Y ) : ( Base `  Y
) --> ( Base `  Y
) )
189, 17syl 16 . . . . . 6  |-  ( ph  ->  ( inv g `  Y ) : (
Base `  Y ) --> ( Base `  Y )
)
1918feqmptd 5718 . . . . 5  |-  ( ph  ->  ( inv g `  Y )  =  ( x  e.  ( Base `  Y )  |->  ( ( inv g `  Y
) `  x )
) )
202adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  Y )
)  ->  I  e.  W )
213adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  Y )
)  ->  S  e.  V )
228adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  Y )
)  ->  R :
I --> Grp )
23 simpr 448 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  Y )
)  ->  x  e.  ( Base `  Y )
)
241, 20, 21, 22, 15, 16, 23prdsinvgd 14855 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  Y )
)  ->  ( ( inv g `  Y ) `
 x )  =  ( y  e.  I  |->  ( ( inv g `  ( R `  y
) ) `  (
x `  y )
) ) )
2524mpteq2dva 4236 . . . . 5  |-  ( ph  ->  ( x  e.  (
Base `  Y )  |->  ( ( inv g `  Y ) `  x
) )  =  ( x  e.  ( Base `  Y )  |->  ( y  e.  I  |->  ( ( inv g `  ( R `  y )
) `  ( x `  y ) ) ) ) )
2619, 25eqtrd 2419 . . . 4  |-  ( ph  ->  ( inv g `  Y )  =  ( x  e.  ( Base `  Y )  |->  ( y  e.  I  |->  ( ( inv g `  ( R `  y )
) `  ( x `  y ) ) ) ) )
27 eqid 2387 . . . . 5  |-  ( Xt_ `  ( TopOpen  o.  R )
)  =  ( Xt_ `  ( TopOpen  o.  R )
)
28 eqid 2387 . . . . . . 7  |-  ( TopOpen `  Y )  =  (
TopOpen `  Y )
2928, 15tmdtopon 18032 . . . . . 6  |-  ( Y  e. TopMnd  ->  ( TopOpen `  Y
)  e.  (TopOn `  ( Base `  Y )
) )
3014, 29syl 16 . . . . 5  |-  ( ph  ->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
31 topnfn 13580 . . . . . . 7  |-  TopOpen  Fn  _V
32 ffn 5531 . . . . . . . . 9  |-  ( R : I --> TopGrp  ->  R  Fn  I )
334, 32syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
34 dffn2 5532 . . . . . . . 8  |-  ( R  Fn  I  <->  R :
I --> _V )
3533, 34sylib 189 . . . . . . 7  |-  ( ph  ->  R : I --> _V )
36 fnfco 5549 . . . . . . 7  |-  ( (
TopOpen  Fn  _V  /\  R : I --> _V )  ->  ( TopOpen  o.  R )  Fn  I )
3731, 35, 36sylancr 645 . . . . . 6  |-  ( ph  ->  ( TopOpen  o.  R )  Fn  I )
38 fvco3 5739 . . . . . . . . 9  |-  ( ( R : I --> TopGrp  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  =  (
TopOpen `  ( R `  y ) ) )
394, 38sylan 458 . . . . . . . 8  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  =  (
TopOpen `  ( R `  y ) ) )
404ffvelrnda 5809 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  TopGrp )
41 eqid 2387 . . . . . . . . . 10  |-  ( TopOpen `  ( R `  y ) )  =  ( TopOpen `  ( R `  y ) )
42 eqid 2387 . . . . . . . . . 10  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
4341, 42tgptopon 18033 . . . . . . . . 9  |-  ( ( R `  y )  e.  TopGrp  ->  ( TopOpen `  ( R `  y )
)  e.  (TopOn `  ( Base `  ( R `  y ) ) ) )
44 topontop 16914 . . . . . . . . 9  |-  ( (
TopOpen `  ( R `  y ) )  e.  (TopOn `  ( Base `  ( R `  y
) ) )  -> 
( TopOpen `  ( R `  y ) )  e. 
Top )
4540, 43, 443syl 19 . . . . . . . 8  |-  ( (
ph  /\  y  e.  I )  ->  ( TopOpen
`  ( R `  y ) )  e. 
Top )
4639, 45eqeltrd 2461 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  e.  Top )
4746ralrimiva 2732 . . . . . 6  |-  ( ph  ->  A. y  e.  I 
( ( TopOpen  o.  R
) `  y )  e.  Top )
48 ffnfv 5833 . . . . . 6  |-  ( (
TopOpen  o.  R ) : I --> Top  <->  ( ( TopOpen  o.  R )  Fn  I  /\  A. y  e.  I 
( ( TopOpen  o.  R
) `  y )  e.  Top ) )
4937, 47, 48sylanbrc 646 . . . . 5  |-  ( ph  ->  ( TopOpen  o.  R ) : I --> Top )
5030adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( TopOpen
`  Y )  e.  (TopOn `  ( Base `  Y ) ) )
511, 3, 2, 33, 28prdstopn 17581 . . . . . . . . . . . . 13  |-  ( ph  ->  ( TopOpen `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
5251adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  I )  ->  ( TopOpen
`  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
5352eqcomd 2392 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
TopOpen `  Y ) )
5453, 50eqeltrd 2461 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) ) )
55 toponuni 16915 . . . . . . . . . 10  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
56 mpteq1 4230 . . . . . . . . . 10  |-  ( (
Base `  Y )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )  ->  ( x  e.  ( Base `  Y
)  |->  ( x `  y ) )  =  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  y ) ) )
5754, 55, 563syl 19 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 y ) )  =  ( x  e. 
U. ( Xt_ `  ( TopOpen  o.  R ) ) 
|->  ( x `  y
) ) )
582adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
5949adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  ( TopOpen  o.  R ) : I --> Top )
60 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
61 eqid 2387 . . . . . . . . . . 11  |-  U. ( Xt_ `  ( TopOpen  o.  R
) )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )
6261, 27ptpjcn 17564 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R ) : I --> Top  /\  y  e.  I )  ->  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  y ) )  e.  ( (
Xt_ `  ( TopOpen  o.  R
) )  Cn  (
( TopOpen  o.  R ) `  y ) ) )
6358, 59, 60, 62syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  U. ( Xt_ `  ( TopOpen  o.  R
) )  |->  ( x `
 y ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  y ) ) )
6457, 63eqeltrd 2461 . . . . . . . 8  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 y ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  y ) ) )
6553, 39oveq12d 6038 . . . . . . . 8  |-  ( (
ph  /\  y  e.  I )  ->  (
( Xt_ `  ( TopOpen  o.  R ) )  Cn  ( ( TopOpen  o.  R
) `  y )
)  =  ( (
TopOpen `  Y )  Cn  ( TopOpen `  ( R `  y ) ) ) )
6664, 65eleqtrd 2463 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 y ) )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  ( R `  y ) ) ) )
67 eqid 2387 . . . . . . . . 9  |-  ( inv g `  ( R `
 y ) )  =  ( inv g `  ( R `  y
) )
6841, 67tgpinv 18036 . . . . . . . 8  |-  ( ( R `  y )  e.  TopGrp  ->  ( inv g `  ( R `  y
) )  e.  ( ( TopOpen `  ( R `  y ) )  Cn  ( TopOpen `  ( R `  y ) ) ) )
6940, 68syl 16 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  ( inv g `  ( R `
 y ) )  e.  ( ( TopOpen `  ( R `  y ) )  Cn  ( TopOpen `  ( R `  y ) ) ) )
7050, 66, 69cnmpt11f 17617 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( ( inv g `  ( R `  y )
) `  ( x `  y ) ) )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  ( R `  y ) ) ) )
7139oveq2d 6036 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen `  Y )  Cn  ( ( TopOpen  o.  R
) `  y )
)  =  ( (
TopOpen `  Y )  Cn  ( TopOpen `  ( R `  y ) ) ) )
7270, 71eleqtrrd 2464 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( ( inv g `  ( R `  y )
) `  ( x `  y ) ) )  e.  ( ( TopOpen `  Y )  Cn  (
( TopOpen  o.  R ) `  y ) ) )
7327, 30, 2, 49, 72ptcn 17580 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  Y )  |->  ( y  e.  I  |->  ( ( inv g `  ( R `  y
) ) `  (
x `  y )
) ) )  e.  ( ( TopOpen `  Y
)  Cn  ( Xt_ `  ( TopOpen  o.  R )
) ) )
7426, 73eqeltrd 2461 . . 3  |-  ( ph  ->  ( inv g `  Y )  e.  ( ( TopOpen `  Y )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
7551oveq2d 6036 . . 3  |-  ( ph  ->  ( ( TopOpen `  Y
)  Cn  ( TopOpen `  Y ) )  =  ( ( TopOpen `  Y
)  Cn  ( Xt_ `  ( TopOpen  o.  R )
) ) )
7674, 75eleqtrrd 2464 . 2  |-  ( ph  ->  ( inv g `  Y )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen `  Y )
) )
7728, 16istgp 18028 . 2  |-  ( Y  e.  TopGrp 
<->  ( Y  e.  Grp  /\  Y  e. TopMnd  /\  ( inv g `  Y )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  Y ) ) ) )
789, 14, 76, 77syl3anbrc 1138 1  |-  ( ph  ->  Y  e.  TopGrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899    C_ wss 3263   U.cuni 3957    e. cmpt 4207    o. ccom 4822    Fn wfn 5389   -->wf 5390   ` cfv 5394  (class class class)co 6020   Basecbs 13396   TopOpenctopn 13576   Xt_cpt 13593   X_scprds 13596   Grpcgrp 14612   inv gcminusg 14613   Topctop 16881  TopOnctopon 16882    Cn ccn 17210  TopMndctmd 18021   TopGrpctgp 18022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-plusg 13469  df-mulr 13470  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-0g 13654  df-mnd 14617  df-plusf 14618  df-grp 14739  df-minusg 14740  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cn 17213  df-cnp 17214  df-tx 17515  df-tmd 18023  df-tgp 18024
  Copyright terms: Public domain W3C validator