MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Unicode version

Theorem prdstmdd 17858
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y  |-  Y  =  ( S X_s R )
prdstmdd.i  |-  ( ph  ->  I  e.  W )
prdstmdd.s  |-  ( ph  ->  S  e.  V )
prdstmdd.r  |-  ( ph  ->  R : I -->TopMnd )
Assertion
Ref Expression
prdstmdd  |-  ( ph  ->  Y  e. TopMnd )

Proof of Theorem prdstmdd
Dummy variables  f 
g  k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3  |-  Y  =  ( S X_s R )
2 prdstmdd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdstmdd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdstmdd.r . . . 4  |-  ( ph  ->  R : I -->TopMnd )
5 tmdmnd 17810 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  Mnd )
65ssriv 3218 . . . 4  |- TopMnd  C_  Mnd
7 fss 5435 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  Mnd )  ->  R : I --> Mnd )
84, 6, 7sylancl 643 . . 3  |-  ( ph  ->  R : I --> Mnd )
91, 2, 3, 8prdsmndd 14454 . 2  |-  ( ph  ->  Y  e.  Mnd )
10 tmdtps 17811 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  TopSp )
1110ssriv 3218 . . . 4  |- TopMnd  C_  TopSp
12 fss 5435 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  TopSp )  ->  R : I --> TopSp )
134, 11, 12sylancl 643 . . 3  |-  ( ph  ->  R : I --> TopSp )
141, 3, 2, 13prdstps 17379 . 2  |-  ( ph  ->  Y  e.  TopSp )
15 eqid 2316 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
1633ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  S  e.  V
)
1723ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  I  e.  W
)
18 ffn 5427 . . . . . . . . 9  |-  ( R : I -->TopMnd  ->  R  Fn  I )
194, 18syl 15 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
20193ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  R  Fn  I
)
21 simp2 956 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  f  e.  (
Base `  Y )
)
22 simp3 957 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  g  e.  (
Base `  Y )
)
23 eqid 2316 . . . . . . 7  |-  ( +g  `  Y )  =  ( +g  `  Y )
241, 15, 16, 17, 20, 21, 22, 23prdsplusgval 13421 . . . . . 6  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  ( f ( +g  `  Y ) g )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
2524mpt2eq3dva 5954 . . . . 5  |-  ( ph  ->  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( f ( +g  `  Y
) g ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) ) )
26 eqid 2316 . . . . . 6  |-  ( + f `  Y )  =  ( + f `  Y )
2715, 23, 26plusffval 14428 . . . . 5  |-  ( + f `  Y )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( f ( +g  `  Y ) g ) )
28 vex 2825 . . . . . . . . . 10  |-  f  e. 
_V
29 vex 2825 . . . . . . . . . 10  |-  g  e. 
_V
3028, 29op1std 6172 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 1st `  z
)  =  f )
3130fveq1d 5565 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 1st `  z ) `  k
)  =  ( f `
 k ) )
3228, 29op2ndd 6173 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 2nd `  z
)  =  g )
3332fveq1d 5565 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 2nd `  z ) `  k
)  =  ( g `
 k ) )
3431, 33oveq12d 5918 . . . . . . 7  |-  ( z  =  <. f ,  g
>.  ->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
)  =  ( ( f `  k ) ( +g  `  ( R `  k )
) ( g `  k ) ) )
3534mpteq2dv 4144 . . . . . 6  |-  ( z  =  <. f ,  g
>.  ->  ( k  e.  I  |->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
3635mpt2mpt 5981 . . . . 5  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( k  e.  I  |->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) )
3725, 27, 363eqtr4g 2373 . . . 4  |-  ( ph  ->  ( + f `  Y )  =  ( z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) ) )
38 eqid 2316 . . . . 5  |-  ( Xt_ `  ( TopOpen  o.  R )
)  =  ( Xt_ `  ( TopOpen  o.  R )
)
39 eqid 2316 . . . . . . . 8  |-  ( TopOpen `  Y )  =  (
TopOpen `  Y )
4015, 39istps 16730 . . . . . . 7  |-  ( Y  e.  TopSp 
<->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
4114, 40sylib 188 . . . . . 6  |-  ( ph  ->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
42 txtopon 17342 . . . . . 6  |-  ( ( ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) )  /\  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )  ->  ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  e.  (TopOn `  (
( Base `  Y )  X.  ( Base `  Y
) ) ) )
4341, 41, 42syl2anc 642 . . . . 5  |-  ( ph  ->  ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  e.  (TopOn `  ( ( Base `  Y )  X.  ( Base `  Y
) ) ) )
44 topnfn 13379 . . . . . . . 8  |-  TopOpen  Fn  _V
45 ssv 3232 . . . . . . . 8  |-  TopSp  C_  _V
46 fnssres 5394 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  TopSp  C_ 
_V )  ->  ( TopOpen  |`  TopSp )  Fn  TopSp )
4744, 45, 46mp2an 653 . . . . . . 7  |-  ( TopOpen  |`  TopSp
)  Fn  TopSp
48 fvres 5580 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  =  ( TopOpen `  x ) )
49 eqid 2316 . . . . . . . . . 10  |-  ( TopOpen `  x )  =  (
TopOpen `  x )
5049tpstop 16733 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( TopOpen `  x )  e.  Top )
5148, 50eqeltrd 2390 . . . . . . . 8  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
5251rgen 2642 . . . . . . 7  |-  A. x  e.  TopSp  ( ( TopOpen  |`  TopSp
) `  x )  e.  Top
53 ffnfv 5723 . . . . . . 7  |-  ( (
TopOpen 
|`  TopSp ) : TopSp --> Top  <->  ( ( TopOpen  |`  TopSp )  Fn  TopSp  /\ 
A. x  e.  TopSp  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
)
5447, 52, 53mpbir2an 886 . . . . . 6  |-  ( TopOpen  |`  TopSp
) : TopSp --> Top
55 fco2 5437 . . . . . 6  |-  ( ( ( TopOpen  |`  TopSp ) : TopSp --> Top 
/\  R : I -->
TopSp )  ->  ( TopOpen  o.  R ) : I --> Top )
5654, 13, 55sylancr 644 . . . . 5  |-  ( ph  ->  ( TopOpen  o.  R ) : I --> Top )
5734mpt2mpt 5981 . . . . . 6  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) )  =  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) )
58 eqid 2316 . . . . . . . 8  |-  ( TopOpen `  ( R `  k ) )  =  ( TopOpen `  ( R `  k ) )
59 eqid 2316 . . . . . . . 8  |-  ( +g  `  ( R `  k
) )  =  ( +g  `  ( R `
 k ) )
60 ffvelrn 5701 . . . . . . . . 9  |-  ( ( R : I -->TopMnd  /\  k  e.  I )  ->  ( R `  k )  e. TopMnd )
614, 60sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( R `  k )  e. TopMnd )
6241adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  e.  (TopOn `  ( Base `  Y ) ) )
6362, 62cnmpt1st 17418 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  f )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
641, 3, 2, 19, 39prdstopn 17378 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( TopOpen `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6564adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6665, 62eqeltrrd 2391 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) ) )
67 toponuni 16721 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
6866, 67syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
69 mpteq1 4137 . . . . . . . . . . . 12  |-  ( (
Base `  Y )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )  ->  ( x  e.  ( Base `  Y
)  |->  ( x `  k ) )  =  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  k ) ) )
7068, 69syl 15 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  =  ( x  e. 
U. ( Xt_ `  ( TopOpen  o.  R ) ) 
|->  ( x `  k
) ) )
712adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  I  e.  W )
7256adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen  o.  R ) : I --> Top )
73 simpr 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  k  e.  I )
74 eqid 2316 . . . . . . . . . . . . 13  |-  U. ( Xt_ `  ( TopOpen  o.  R
) )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )
7574, 38ptpjcn 17361 . . . . . . . . . . . 12  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R ) : I --> Top  /\  k  e.  I )  ->  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  k ) )  e.  ( (
Xt_ `  ( TopOpen  o.  R
) )  Cn  (
( TopOpen  o.  R ) `  k ) ) )
7671, 72, 73, 75syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  U. ( Xt_ `  ( TopOpen  o.  R
) )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7770, 76eqeltrd 2390 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7865eqcomd 2321 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
TopOpen `  Y ) )
79 fvco3 5634 . . . . . . . . . . . 12  |-  ( ( R : I -->TopMnd  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
804, 79sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
8178, 80oveq12d 5918 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
( Xt_ `  ( TopOpen  o.  R ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( (
TopOpen `  Y )  Cn  ( TopOpen `  ( R `  k ) ) ) )
8277, 81eleqtrd 2392 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  ( R `  k ) ) ) )
83 fveq1 5562 . . . . . . . . 9  |-  ( x  =  f  ->  (
x `  k )  =  ( f `  k ) )
8462, 62, 63, 62, 82, 83cnmpt21 17421 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( f `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8562, 62cnmpt2nd 17419 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  g )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
86 fveq1 5562 . . . . . . . . 9  |-  ( x  =  g  ->  (
x `  k )  =  ( g `  k ) )
8762, 62, 85, 62, 82, 86cnmpt21 17421 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( g `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8858, 59, 61, 62, 62, 84, 87cnmpt2plusg 17823 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8980oveq2d 5916 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( ( ( TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  ( R `  k ) ) ) )
9088, 89eleqtrrd 2393 . . . . . 6  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( ( TopOpen  o.  R ) `  k
) ) )
9157, 90syl5eqel 2400 . . . . 5  |-  ( (
ph  /\  k  e.  I )  ->  (
z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
) )
9238, 43, 2, 56, 91ptcn 17377 . . . 4  |-  ( ph  ->  ( z  e.  ( ( Base `  Y
)  X.  ( Base `  Y ) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9337, 92eqeltrd 2390 . . 3  |-  ( ph  ->  ( + f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9464oveq2d 5916 . . 3  |-  ( ph  ->  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) )  =  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9593, 94eleqtrrd 2393 . 2  |-  ( ph  ->  ( + f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( TopOpen `  Y )
) )
9626, 39istmd 17809 . 2  |-  ( Y  e. TopMnd 
<->  ( Y  e.  Mnd  /\  Y  e.  TopSp  /\  ( + f `  Y )  e.  ( ( (
TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  Y ) ) ) )
979, 14, 95, 96syl3anbrc 1136 1  |-  ( ph  ->  Y  e. TopMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   A.wral 2577   _Vcvv 2822    C_ wss 3186   <.cop 3677   U.cuni 3864    e. cmpt 4114    X. cxp 4724    |` cres 4728    o. ccom 4730    Fn wfn 5287   -->wf 5288   ` cfv 5292  (class class class)co 5900    e. cmpt2 5902   1stc1st 6162   2ndc2nd 6163   Basecbs 13195   +g cplusg 13255   TopOpenctopn 13375   Xt_cpt 13392   X_scprds 13395   Mndcmnd 14410   + fcplusf 14413   Topctop 16687  TopOnctopon 16688   TopSpctps 16690    Cn ccn 17010    tX ctx 17311  TopMndctmd 17805
This theorem is referenced by:  prdstgpd  17859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-map 6817  df-ixp 6861  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-fi 7210  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-7 9854  df-8 9855  df-9 9856  df-10 9857  df-n0 10013  df-z 10072  df-dec 10172  df-uz 10278  df-fz 10830  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-plusg 13268  df-mulr 13269  df-sca 13271  df-vsca 13272  df-tset 13274  df-ple 13275  df-ds 13277  df-hom 13279  df-cco 13280  df-rest 13376  df-topn 13377  df-topgen 13393  df-pt 13394  df-prds 13397  df-0g 13453  df-mnd 14416  df-plusf 14417  df-top 16692  df-bases 16694  df-topon 16695  df-topsp 16696  df-cn 17013  df-cnp 17014  df-tx 17313  df-tmd 17807
  Copyright terms: Public domain W3C validator