MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstmdd Structured version   Unicode version

Theorem prdstmdd 18155
Description: The product of a family of topological monoids is a topological monoid. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstmdd.y  |-  Y  =  ( S X_s R )
prdstmdd.i  |-  ( ph  ->  I  e.  W )
prdstmdd.s  |-  ( ph  ->  S  e.  V )
prdstmdd.r  |-  ( ph  ->  R : I -->TopMnd )
Assertion
Ref Expression
prdstmdd  |-  ( ph  ->  Y  e. TopMnd )

Proof of Theorem prdstmdd
Dummy variables  f 
g  k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstmdd.y . . 3  |-  Y  =  ( S X_s R )
2 prdstmdd.i . . 3  |-  ( ph  ->  I  e.  W )
3 prdstmdd.s . . 3  |-  ( ph  ->  S  e.  V )
4 prdstmdd.r . . . 4  |-  ( ph  ->  R : I -->TopMnd )
5 tmdmnd 18107 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  Mnd )
65ssriv 3354 . . . 4  |- TopMnd  C_  Mnd
7 fss 5601 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  Mnd )  ->  R : I --> Mnd )
84, 6, 7sylancl 645 . . 3  |-  ( ph  ->  R : I --> Mnd )
91, 2, 3, 8prdsmndd 14730 . 2  |-  ( ph  ->  Y  e.  Mnd )
10 tmdtps 18108 . . . . 5  |-  ( x  e. TopMnd  ->  x  e.  TopSp )
1110ssriv 3354 . . . 4  |- TopMnd  C_  TopSp
12 fss 5601 . . . 4  |-  ( ( R : I -->TopMnd  /\ TopMnd  C_  TopSp )  ->  R : I --> TopSp )
134, 11, 12sylancl 645 . . 3  |-  ( ph  ->  R : I --> TopSp )
141, 3, 2, 13prdstps 17663 . 2  |-  ( ph  ->  Y  e.  TopSp )
15 eqid 2438 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
1633ad2ant1 979 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  S  e.  V
)
1723ad2ant1 979 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  I  e.  W
)
18 ffn 5593 . . . . . . . . 9  |-  ( R : I -->TopMnd  ->  R  Fn  I )
194, 18syl 16 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
20193ad2ant1 979 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  R  Fn  I
)
21 simp2 959 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  f  e.  (
Base `  Y )
)
22 simp3 960 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  g  e.  (
Base `  Y )
)
23 eqid 2438 . . . . . . 7  |-  ( +g  `  Y )  =  ( +g  `  Y )
241, 15, 16, 17, 20, 21, 22, 23prdsplusgval 13697 . . . . . 6  |-  ( (
ph  /\  f  e.  ( Base `  Y )  /\  g  e.  ( Base `  Y ) )  ->  ( f ( +g  `  Y ) g )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
2524mpt2eq3dva 6140 . . . . 5  |-  ( ph  ->  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( f ( +g  `  Y
) g ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) ) )
26 eqid 2438 . . . . . 6  |-  ( + f `  Y )  =  ( + f `  Y )
2715, 23, 26plusffval 14704 . . . . 5  |-  ( + f `  Y )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( f ( +g  `  Y ) g ) )
28 vex 2961 . . . . . . . . . 10  |-  f  e. 
_V
29 vex 2961 . . . . . . . . . 10  |-  g  e. 
_V
3028, 29op1std 6359 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 1st `  z
)  =  f )
3130fveq1d 5732 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 1st `  z ) `  k
)  =  ( f `
 k ) )
3228, 29op2ndd 6360 . . . . . . . . 9  |-  ( z  =  <. f ,  g
>.  ->  ( 2nd `  z
)  =  g )
3332fveq1d 5732 . . . . . . . 8  |-  ( z  =  <. f ,  g
>.  ->  ( ( 2nd `  z ) `  k
)  =  ( g `
 k ) )
3431, 33oveq12d 6101 . . . . . . 7  |-  ( z  =  <. f ,  g
>.  ->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
)  =  ( ( f `  k ) ( +g  `  ( R `  k )
) ( g `  k ) ) )
3534mpteq2dv 4298 . . . . . 6  |-  ( z  =  <. f ,  g
>.  ->  ( k  e.  I  |->  ( ( ( 1st `  z ) `
 k ) ( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  =  ( k  e.  I  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) ) )
3635mpt2mpt 6167 . . . . 5  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( k  e.  I  |->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) ) )  =  ( f  e.  ( Base `  Y
) ,  g  e.  ( Base `  Y
)  |->  ( k  e.  I  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) ) )
3725, 27, 363eqtr4g 2495 . . . 4  |-  ( ph  ->  ( + f `  Y )  =  ( z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) ) )
38 eqid 2438 . . . . 5  |-  ( Xt_ `  ( TopOpen  o.  R )
)  =  ( Xt_ `  ( TopOpen  o.  R )
)
39 eqid 2438 . . . . . . . 8  |-  ( TopOpen `  Y )  =  (
TopOpen `  Y )
4015, 39istps 17003 . . . . . . 7  |-  ( Y  e.  TopSp 
<->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
4114, 40sylib 190 . . . . . 6  |-  ( ph  ->  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )
42 txtopon 17625 . . . . . 6  |-  ( ( ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) )  /\  ( TopOpen `  Y )  e.  (TopOn `  ( Base `  Y ) ) )  ->  ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  e.  (TopOn `  (
( Base `  Y )  X.  ( Base `  Y
) ) ) )
4341, 41, 42syl2anc 644 . . . . 5  |-  ( ph  ->  ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  e.  (TopOn `  ( ( Base `  Y )  X.  ( Base `  Y
) ) ) )
44 topnfn 13655 . . . . . . . 8  |-  TopOpen  Fn  _V
45 ssv 3370 . . . . . . . 8  |-  TopSp  C_  _V
46 fnssres 5560 . . . . . . . 8  |-  ( (
TopOpen  Fn  _V  /\  TopSp  C_ 
_V )  ->  ( TopOpen  |`  TopSp )  Fn  TopSp )
4744, 45, 46mp2an 655 . . . . . . 7  |-  ( TopOpen  |`  TopSp
)  Fn  TopSp
48 fvres 5747 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  =  ( TopOpen `  x ) )
49 eqid 2438 . . . . . . . . . 10  |-  ( TopOpen `  x )  =  (
TopOpen `  x )
5049tpstop 17006 . . . . . . . . 9  |-  ( x  e.  TopSp  ->  ( TopOpen `  x )  e.  Top )
5148, 50eqeltrd 2512 . . . . . . . 8  |-  ( x  e.  TopSp  ->  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
5251rgen 2773 . . . . . . 7  |-  A. x  e.  TopSp  ( ( TopOpen  |`  TopSp
) `  x )  e.  Top
53 ffnfv 5896 . . . . . . 7  |-  ( (
TopOpen 
|`  TopSp ) : TopSp --> Top  <->  ( ( TopOpen  |`  TopSp )  Fn  TopSp  /\ 
A. x  e.  TopSp  ( ( TopOpen  |`  TopSp ) `  x
)  e.  Top )
)
5447, 52, 53mpbir2an 888 . . . . . 6  |-  ( TopOpen  |`  TopSp
) : TopSp --> Top
55 fco2 5603 . . . . . 6  |-  ( ( ( TopOpen  |`  TopSp ) : TopSp --> Top 
/\  R : I -->
TopSp )  ->  ( TopOpen  o.  R ) : I --> Top )
5654, 13, 55sylancr 646 . . . . 5  |-  ( ph  ->  ( TopOpen  o.  R ) : I --> Top )
5734mpt2mpt 6167 . . . . . 6  |-  ( z  e.  ( ( Base `  Y )  X.  ( Base `  Y ) ) 
|->  ( ( ( 1st `  z ) `  k
) ( +g  `  ( R `  k )
) ( ( 2nd `  z ) `  k
) ) )  =  ( f  e.  (
Base `  Y ) ,  g  e.  ( Base `  Y )  |->  ( ( f `  k
) ( +g  `  ( R `  k )
) ( g `  k ) ) )
58 eqid 2438 . . . . . . . 8  |-  ( TopOpen `  ( R `  k ) )  =  ( TopOpen `  ( R `  k ) )
59 eqid 2438 . . . . . . . 8  |-  ( +g  `  ( R `  k
) )  =  ( +g  `  ( R `
 k ) )
604ffvelrnda 5872 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( R `  k )  e. TopMnd )
6141adantr 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  e.  (TopOn `  ( Base `  Y ) ) )
6261, 61cnmpt1st 17702 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  f )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
631, 3, 2, 19, 39prdstopn 17662 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( TopOpen `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6463adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen
`  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
6564, 61eqeltrrd 2513 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) ) )
66 toponuni 16994 . . . . . . . . . . . . 13  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  e.  (TopOn `  ( Base `  Y
) )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
6765, 66syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( Base `  Y )  = 
U. ( Xt_ `  ( TopOpen  o.  R ) ) )
6867mpteq1d 4292 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  =  ( x  e. 
U. ( Xt_ `  ( TopOpen  o.  R ) ) 
|->  ( x `  k
) ) )
692adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  I  e.  W )
7056adantr 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  ( TopOpen  o.  R ) : I --> Top )
71 simpr 449 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  I )  ->  k  e.  I )
72 eqid 2438 . . . . . . . . . . . . 13  |-  U. ( Xt_ `  ( TopOpen  o.  R
) )  =  U. ( Xt_ `  ( TopOpen  o.  R ) )
7372, 38ptpjcn 17645 . . . . . . . . . . . 12  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R ) : I --> Top  /\  k  e.  I )  ->  ( x  e.  U. ( Xt_ `  ( TopOpen  o.  R ) )  |->  ( x `  k ) )  e.  ( (
Xt_ `  ( TopOpen  o.  R
) )  Cn  (
( TopOpen  o.  R ) `  k ) ) )
7469, 70, 71, 73syl3anc 1185 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  U. ( Xt_ `  ( TopOpen  o.  R
) )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7568, 74eqeltrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( Xt_ `  ( TopOpen  o.  R )
)  Cn  ( (
TopOpen  o.  R ) `  k ) ) )
7664eqcomd 2443 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
TopOpen `  Y ) )
77 fvco3 5802 . . . . . . . . . . . 12  |-  ( ( R : I -->TopMnd  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
784, 77sylan 459 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  I )  ->  (
( TopOpen  o.  R ) `  k )  =  (
TopOpen `  ( R `  k ) ) )
7976, 78oveq12d 6101 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  I )  ->  (
( Xt_ `  ( TopOpen  o.  R ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( (
TopOpen `  Y )  Cn  ( TopOpen `  ( R `  k ) ) ) )
8075, 79eleqtrd 2514 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
x  e.  ( Base `  Y )  |->  ( x `
 k ) )  e.  ( ( TopOpen `  Y )  Cn  ( TopOpen
`  ( R `  k ) ) ) )
81 fveq1 5729 . . . . . . . . 9  |-  ( x  =  f  ->  (
x `  k )  =  ( f `  k ) )
8261, 61, 62, 61, 80, 81cnmpt21 17705 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( f `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8361, 61cnmpt2nd 17703 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  g )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) ) )
84 fveq1 5729 . . . . . . . . 9  |-  ( x  =  g  ->  (
x `  k )  =  ( g `  k ) )
8561, 61, 83, 61, 80, 84cnmpt21 17705 . . . . . . . 8  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( g `  k ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8658, 59, 60, 61, 61, 82, 85cnmpt2plusg 18120 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  ( R `  k )
) ) )
8778oveq2d 6099 . . . . . . 7  |-  ( (
ph  /\  k  e.  I )  ->  (
( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
)  =  ( ( ( TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  ( R `  k ) ) ) )
8886, 87eleqtrrd 2515 . . . . . 6  |-  ( (
ph  /\  k  e.  I )  ->  (
f  e.  ( Base `  Y ) ,  g  e.  ( Base `  Y
)  |->  ( ( f `
 k ) ( +g  `  ( R `
 k ) ) ( g `  k
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( ( TopOpen  o.  R ) `  k
) ) )
8957, 88syl5eqel 2522 . . . . 5  |-  ( (
ph  /\  k  e.  I )  ->  (
z  e.  ( (
Base `  Y )  X.  ( Base `  Y
) )  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( ( TopOpen  o.  R
) `  k )
) )
9038, 43, 2, 56, 89ptcn 17661 . . . 4  |-  ( ph  ->  ( z  e.  ( ( Base `  Y
)  X.  ( Base `  Y ) )  |->  ( k  e.  I  |->  ( ( ( 1st `  z
) `  k )
( +g  `  ( R `
 k ) ) ( ( 2nd `  z
) `  k )
) ) )  e.  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9137, 90eqeltrd 2512 . . 3  |-  ( ph  ->  ( + f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9263oveq2d 6099 . . 3  |-  ( ph  ->  ( ( ( TopOpen `  Y )  tX  ( TopOpen
`  Y ) )  Cn  ( TopOpen `  Y
) )  =  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( Xt_ `  ( TopOpen  o.  R ) ) ) )
9391, 92eleqtrrd 2515 . 2  |-  ( ph  ->  ( + f `  Y )  e.  ( ( ( TopOpen `  Y
)  tX  ( TopOpen `  Y ) )  Cn  ( TopOpen `  Y )
) )
9426, 39istmd 18106 . 2  |-  ( Y  e. TopMnd 
<->  ( Y  e.  Mnd  /\  Y  e.  TopSp  /\  ( + f `  Y )  e.  ( ( (
TopOpen `  Y )  tX  ( TopOpen `  Y )
)  Cn  ( TopOpen `  Y ) ) ) )
959, 14, 93, 94syl3anbrc 1139 1  |-  ( ph  ->  Y  e. TopMnd )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958    C_ wss 3322   <.cop 3819   U.cuni 4017    e. cmpt 4268    X. cxp 4878    |` cres 4882    o. ccom 4884    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   1stc1st 6349   2ndc2nd 6350   Basecbs 13471   +g cplusg 13531   TopOpenctopn 13651   Xt_cpt 13668   X_scprds 13671   Mndcmnd 14686   + fcplusf 14689   Topctop 16960  TopOnctopon 16961   TopSpctps 16963    Cn ccn 17290    tX ctx 17594  TopMndctmd 18102
This theorem is referenced by:  prdstgpd  18156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-0g 13729  df-mnd 14692  df-plusf 14693  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cn 17293  df-cnp 17294  df-tx 17596  df-tmd 18104
  Copyright terms: Public domain W3C validator