MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Unicode version

Theorem prdstopn 17662
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y  |-  Y  =  ( S X_s R )
prdstopn.s  |-  ( ph  ->  S  e.  V )
prdstopn.i  |-  ( ph  ->  I  e.  W )
prdstopn.r  |-  ( ph  ->  R  Fn  I )
prdstopn.o  |-  O  =  ( TopOpen `  Y )
Assertion
Ref Expression
prdstopn  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )

Proof of Theorem prdstopn
Dummy variables  x  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6  |-  Y  =  ( S X_s R )
2 prdstopn.s . . . . . 6  |-  ( ph  ->  S  e.  V )
3 prdstopn.r . . . . . . 7  |-  ( ph  ->  R  Fn  I )
4 prdstopn.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
5 fnex 5963 . . . . . . 7  |-  ( ( R  Fn  I  /\  I  e.  W )  ->  R  e.  _V )
63, 4, 5syl2anc 644 . . . . . 6  |-  ( ph  ->  R  e.  _V )
7 eqid 2438 . . . . . 6  |-  ( Base `  Y )  =  (
Base `  Y )
8 eqidd 2439 . . . . . 6  |-  ( ph  ->  dom  R  =  dom  R )
9 eqid 2438 . . . . . 6  |-  (TopSet `  Y )  =  (TopSet `  Y )
101, 2, 6, 7, 8, 9prdstset 13690 . . . . 5  |-  ( ph  ->  (TopSet `  Y )  =  ( Xt_ `  ( TopOpen  o.  R ) ) )
11 topnfn 13655 . . . . . . . . . . 11  |-  TopOpen  Fn  _V
12 dffn2 5594 . . . . . . . . . . . 12  |-  ( R  Fn  I  <->  R :
I --> _V )
133, 12sylib 190 . . . . . . . . . . 11  |-  ( ph  ->  R : I --> _V )
14 fnfco 5611 . . . . . . . . . . 11  |-  ( (
TopOpen  Fn  _V  /\  R : I --> _V )  ->  ( TopOpen  o.  R )  Fn  I )
1511, 13, 14sylancr 646 . . . . . . . . . 10  |-  ( ph  ->  ( TopOpen  o.  R )  Fn  I )
16 eqid 2438 . . . . . . . . . . 11  |-  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  =  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }
1716ptval 17604 . . . . . . . . . 10  |-  ( ( I  e.  W  /\  ( TopOpen  o.  R )  Fn  I )  ->  ( Xt_ `  ( TopOpen  o.  R
) )  =  (
topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
184, 15, 17syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) )  =  ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
1918unieqd 4028 . . . . . . . 8  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. ( topGen `  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } ) )
20 simpl2 962 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )
21 fvco2 5800 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( R  Fn  I  /\  y  e.  I )  ->  ( ( TopOpen  o.  R
) `  y )  =  ( TopOpen `  ( R `  y )
) )
223, 21sylan 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  =  (
TopOpen `  ( R `  y ) ) )
23 eqid 2438 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
24 eqid 2438 . . . . . . . . . . . . . . . . . . . . . . 23  |-  (TopSet `  ( R `  y ) )  =  (TopSet `  ( R `  y ) )
2523, 24topnval 13664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  =  (
TopOpen `  ( R `  y ) )
26 restsspw 13661 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (TopSet `  ( R `  y
) )t  ( Base `  ( R `  y )
) )  C_  ~P ( Base `  ( R `  y ) )
2725, 26eqsstr3i 3381 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TopOpen `  ( R `  y ) )  C_  ~P ( Base `  ( R `  y ) )
2822, 27syl6eqss 3400 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  I )  ->  (
( TopOpen  o.  R ) `  y )  C_  ~P ( Base `  ( R `  y ) ) )
2928sseld 3349 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  e.  ~P ( Base `  ( R `  y )
) ) )
30 fvex 5744 . . . . . . . . . . . . . . . . . . . 20  |-  ( g `
 y )  e. 
_V
3130elpw 3807 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  y )  e.  ~P ( Base `  ( R `  y
) )  <->  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
3229, 31syl6ib 219 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  I )  ->  (
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  ->  (
g `  y )  C_  ( Base `  ( R `  y )
) ) )
3332ralimdva 2786 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) ) )
3433imp 420 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y ) )  ->  A. y  e.  I 
( g `  y
)  C_  ( Base `  ( R `  y
) ) )
3520, 34sylan2 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  A. y  e.  I  ( g `  y )  C_  ( Base `  ( R `  y ) ) )
36 ss2ixp 7077 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  I  (
g `  y )  C_  ( Base `  ( R `  y )
)  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
3735, 36syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  X_ y  e.  I  ( g `  y )  C_  X_ y  e.  I  ( Base `  ( R `  y
) ) )
38 simprr 735 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  =  X_ y  e.  I 
( g `  y
) )
391, 7, 2, 4, 3prdsbas2 13693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Base `  Y
)  =  X_ y  e.  I  ( Base `  ( R `  y
) ) )
4039adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  ( Base `  Y )  = 
X_ y  e.  I 
( Base `  ( R `  y ) ) )
4137, 38, 403sstr4d 3393 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) )  ->  x  C_  ( Base `  Y
) )
4241ex 425 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y
) ) )
4342exlimdv 1647 . . . . . . . . . . 11  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  C_  ( Base `  Y ) ) )
44 vex 2961 . . . . . . . . . . . 12  |-  x  e. 
_V
4544elpw 3807 . . . . . . . . . . 11  |-  ( x  e.  ~P ( Base `  Y )  <->  x  C_  ( Base `  Y ) )
4643, 45syl6ibr 220 . . . . . . . . . 10  |-  ( ph  ->  ( E. g ( ( g  Fn  I  /\  A. y  e.  I 
( g `  y
)  e.  ( (
TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) )  ->  x  e.  ~P ( Base `  Y
) ) )
4746abssdv 3419 . . . . . . . . 9  |-  ( ph  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ~P ( Base `  Y
) )
48 fvex 5744 . . . . . . . . . . 11  |-  ( Base `  Y )  e.  _V
4948pwex 4384 . . . . . . . . . 10  |-  ~P ( Base `  Y )  e. 
_V
5049ssex 4349 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  ->  { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V )
51 unitg 17034 . . . . . . . . 9  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  e.  _V  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5247, 50, 513syl 19 . . . . . . . 8  |-  ( ph  ->  U. ( topGen `  {
x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )  = 
U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
5319, 52eqtrd 2470 . . . . . . 7  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) )  =  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) } )
54 sspwuni 4178 . . . . . . . 8  |-  ( { x  |  E. g
( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ~P ( Base `  Y )  <->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  (
g `  y )  e.  ( ( TopOpen  o.  R
) `  y )  /\  E. z  e.  Fin  A. y  e.  ( I 
\  z ) ( g `  y )  =  U. ( (
TopOpen  o.  R ) `  y ) )  /\  x  =  X_ y  e.  I  ( g `  y ) ) } 
C_  ( Base `  Y
) )
5547, 54sylib 190 . . . . . . 7  |-  ( ph  ->  U. { x  |  E. g ( ( g  Fn  I  /\  A. y  e.  I  ( g `  y )  e.  ( ( TopOpen  o.  R ) `  y
)  /\  E. z  e.  Fin  A. y  e.  ( I  \  z
) ( g `  y )  =  U. ( ( TopOpen  o.  R
) `  y )
)  /\  x  =  X_ y  e.  I  ( g `  y ) ) }  C_  ( Base `  Y ) )
5653, 55eqsstrd 3384 . . . . . 6  |-  ( ph  ->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
57 sspwuni 4178 . . . . . 6  |-  ( (
Xt_ `  ( TopOpen  o.  R
) )  C_  ~P ( Base `  Y )  <->  U. ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ( Base `  Y
) )
5856, 57sylibr 205 . . . . 5  |-  ( ph  ->  ( Xt_ `  ( TopOpen  o.  R ) ) 
C_  ~P ( Base `  Y
) )
5910, 58eqsstrd 3384 . . . 4  |-  ( ph  ->  (TopSet `  Y )  C_ 
~P ( Base `  Y
) )
607, 9topnid 13665 . . . 4  |-  ( (TopSet `  Y )  C_  ~P ( Base `  Y )  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
6159, 60syl 16 . . 3  |-  ( ph  ->  (TopSet `  Y )  =  ( TopOpen `  Y
) )
62 prdstopn.o . . 3  |-  O  =  ( TopOpen `  Y )
6361, 62syl6eqr 2488 . 2  |-  ( ph  ->  (TopSet `  Y )  =  O )
6463, 10eqtr3d 2472 1  |-  ( ph  ->  O  =  ( Xt_ `  ( TopOpen  o.  R )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708   _Vcvv 2958    \ cdif 3319    C_ wss 3322   ~Pcpw 3801   U.cuni 4017   dom cdm 4880    o. ccom 4884    Fn wfn 5451   -->wf 5452   ` cfv 5456  (class class class)co 6083   X_cixp 7065   Fincfn 7111   Basecbs 13471  TopSetcts 13537   ↾t crest 13650   TopOpenctopn 13651   topGenctg 13667   Xt_cpt 13668   X_scprds 13671
This theorem is referenced by:  xpstopnlem2  17845  prdstmdd  18155  prdstgpd  18156  prdsxmslem2  18561
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673
  Copyright terms: Public domain W3C validator