MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsxmet Unicode version

Theorem prdsxmet 17949
Description: The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 17948. (Contributed by Mario Carneiro, 26-Sep-2015.)
Hypotheses
Ref Expression
prdsdsf.y  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
prdsdsf.b  |-  B  =  ( Base `  Y
)
prdsdsf.v  |-  V  =  ( Base `  R
)
prdsdsf.e  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
prdsdsf.d  |-  D  =  ( dist `  Y
)
prdsdsf.s  |-  ( ph  ->  S  e.  W )
prdsdsf.i  |-  ( ph  ->  I  e.  X )
prdsdsf.r  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
prdsdsf.m  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
Assertion
Ref Expression
prdsxmet  |-  ( ph  ->  D  e.  ( * Met `  B ) )
Distinct variable groups:    x, I    ph, x
Allowed substitution hints:    B( x)    D( x)    R( x)    S( x)    E( x)    V( x)    W( x)    X( x)    Y( x)    Z( x)

Proof of Theorem prdsxmet
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 prdsdsf.y . . 3  |-  Y  =  ( S X_s ( x  e.  I  |->  R ) )
2 nfcv 2432 . . . . 5  |-  F/_ y R
3 nfcsb1v 3126 . . . . 5  |-  F/_ x [_ y  /  x ]_ R
4 csbeq1a 3102 . . . . 5  |-  ( x  =  y  ->  R  =  [_ y  /  x ]_ R )
52, 3, 4cbvmpt 4126 . . . 4  |-  ( x  e.  I  |->  R )  =  ( y  e.  I  |->  [_ y  /  x ]_ R )
65oveq2i 5885 . . 3  |-  ( S
X_s ( x  e.  I  |->  R ) )  =  ( S X_s ( y  e.  I  |-> 
[_ y  /  x ]_ R ) )
71, 6eqtri 2316 . 2  |-  Y  =  ( S X_s ( y  e.  I  |-> 
[_ y  /  x ]_ R ) )
8 prdsdsf.b . 2  |-  B  =  ( Base `  Y
)
9 eqid 2296 . 2  |-  ( Base `  [_ y  /  x ]_ R )  =  (
Base `  [_ y  /  x ]_ R )
10 eqid 2296 . 2  |-  ( (
dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )  =  ( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )
11 prdsdsf.d . 2  |-  D  =  ( dist `  Y
)
12 prdsdsf.s . 2  |-  ( ph  ->  S  e.  W )
13 prdsdsf.i . 2  |-  ( ph  ->  I  e.  X )
14 prdsdsf.r . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Z )
15 elex 2809 . . . . 5  |-  ( R  e.  Z  ->  R  e.  _V )
1614, 15syl 15 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  _V )
1716ralrimiva 2639 . . 3  |-  ( ph  ->  A. x  e.  I  R  e.  _V )
183nfel1 2442 . . . 4  |-  F/ x [_ y  /  x ]_ R  e.  _V
194eleq1d 2362 . . . 4  |-  ( x  =  y  ->  ( R  e.  _V  <->  [_ y  /  x ]_ R  e.  _V ) )
2018, 19rspc 2891 . . 3  |-  ( y  e.  I  ->  ( A. x  e.  I  R  e.  _V  ->  [_ y  /  x ]_ R  e.  _V )
)
2117, 20mpan9 455 . 2  |-  ( (
ph  /\  y  e.  I )  ->  [_ y  /  x ]_ R  e. 
_V )
22 prdsdsf.m . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  E  e.  ( * Met `  V
) )
2322ralrimiva 2639 . . 3  |-  ( ph  ->  A. x  e.  I  E  e.  ( * Met `  V ) )
24 nfcv 2432 . . . . . . 7  |-  F/_ x dist
2524, 3nffv 5548 . . . . . 6  |-  F/_ x
( dist `  [_ y  /  x ]_ R )
26 nfcv 2432 . . . . . . . 8  |-  F/_ x Base
2726, 3nffv 5548 . . . . . . 7  |-  F/_ x
( Base `  [_ y  /  x ]_ R )
2827, 27nfxp 4731 . . . . . 6  |-  F/_ x
( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) )
2925, 28nfres 4973 . . . . 5  |-  F/_ x
( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )
30 nfcv 2432 . . . . . 6  |-  F/_ x * Met
3130, 27nffv 5548 . . . . 5  |-  F/_ x
( * Met `  ( Base `  [_ y  /  x ]_ R ) )
3229, 31nfel 2440 . . . 4  |-  F/ x
( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )  e.  ( * Met `  ( Base `  [_ y  /  x ]_ R ) )
33 prdsdsf.e . . . . . 6  |-  E  =  ( ( dist `  R
)  |`  ( V  X.  V ) )
344fveq2d 5545 . . . . . . 7  |-  ( x  =  y  ->  ( dist `  R )  =  ( dist `  [_ y  /  x ]_ R ) )
35 prdsdsf.v . . . . . . . . 9  |-  V  =  ( Base `  R
)
364fveq2d 5545 . . . . . . . . 9  |-  ( x  =  y  ->  ( Base `  R )  =  ( Base `  [_ y  /  x ]_ R ) )
3735, 36syl5eq 2340 . . . . . . . 8  |-  ( x  =  y  ->  V  =  ( Base `  [_ y  /  x ]_ R ) )
3837, 37xpeq12d 4730 . . . . . . 7  |-  ( x  =  y  ->  ( V  X.  V )  =  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )
3934, 38reseq12d 4972 . . . . . 6  |-  ( x  =  y  ->  (
( dist `  R )  |`  ( V  X.  V
) )  =  ( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) ) )
4033, 39syl5eq 2340 . . . . 5  |-  ( x  =  y  ->  E  =  ( ( dist `  [_ y  /  x ]_ R )  |`  (
( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) ) )
4137fveq2d 5545 . . . . 5  |-  ( x  =  y  ->  ( * Met `  V )  =  ( * Met `  ( Base `  [_ y  /  x ]_ R ) ) )
4240, 41eleq12d 2364 . . . 4  |-  ( x  =  y  ->  ( E  e.  ( * Met `  V )  <->  ( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )  e.  ( * Met `  ( Base `  [_ y  /  x ]_ R ) ) ) )
4332, 42rspc 2891 . . 3  |-  ( y  e.  I  ->  ( A. x  e.  I  E  e.  ( * Met `  V )  -> 
( ( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )  e.  ( * Met `  ( Base `  [_ y  /  x ]_ R ) ) ) )
4423, 43mpan9 455 . 2  |-  ( (
ph  /\  y  e.  I )  ->  (
( dist `  [_ y  /  x ]_ R )  |`  ( ( Base `  [_ y  /  x ]_ R )  X.  ( Base `  [_ y  /  x ]_ R ) ) )  e.  ( * Met `  ( Base `  [_ y  /  x ]_ R ) ) )
457, 8, 9, 10, 11, 12, 13, 21, 44prdsxmetlem 17948 1  |-  ( ph  ->  D  e.  ( * Met `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   [_csb 3094    e. cmpt 4093    X. cxp 4703    |` cres 4707   ` cfv 5271  (class class class)co 5874   Basecbs 13164   distcds 13233   X_scprds 13362   * Metcxmt 16385
This theorem is referenced by:  prdsmet  17950  xpsxmetlem  17959  prdsbl  18053  prdsxmslem1  18090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-xmet 16389
  Copyright terms: Public domain W3C validator