Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predasetex Structured version   Unicode version

Theorem predasetex 25455
Description: The predecessor class exists when  A does. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
predasetex.1  |-  A  e. 
_V
Assertion
Ref Expression
predasetex  |-  Pred ( R ,  A ,  X )  e.  _V

Proof of Theorem predasetex
StepHypRef Expression
1 df-pred 25439 . 2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
2 predasetex.1 . . 3  |-  A  e. 
_V
32inex1 4344 . 2  |-  ( A  i^i  ( `' R " { X } ) )  e.  _V
41, 3eqeltri 2506 1  |-  Pred ( R ,  A ,  X )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   _Vcvv 2956    i^i cin 3319   {csn 3814   `'ccnv 4877   "cima 4881   Predcpred 25438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-in 3327  df-pred 25439
  Copyright terms: Public domain W3C validator