Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predreseq Unicode version

Theorem predreseq 24179
Description: Equality of restriction to predecessor classes. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
predreseq.1  |-  X  e. 
_V
Assertion
Ref Expression
predreseq  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  X ) )  =  ( G  |`  Pred ( R ,  A ,  X ) )  <->  A. y  e.  A  ( y R X  ->  ( F `
 y )  =  ( G `  y
) ) ) )
Distinct variable groups:    y, A    y, F    y, G    y, X    y, R

Proof of Theorem predreseq
StepHypRef Expression
1 predss 24173 . . 3  |-  Pred ( R ,  A ,  X )  C_  A
2 fvreseq 5628 . . 3  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  X
)  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  X ) )  =  ( G  |`  Pred ( R ,  A ,  X ) )  <->  A. y  e.  Pred  ( R ,  A ,  X )
( F `  y
)  =  ( G `
 y ) ) )
31, 2mpan2 652 . 2  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  X ) )  =  ( G  |`  Pred ( R ,  A ,  X ) )  <->  A. y  e.  Pred  ( R ,  A ,  X )
( F `  y
)  =  ( G `
 y ) ) )
4 df-ral 2548 . . . 4  |-  ( A. y  e.  Pred  ( R ,  A ,  X
) ( F `  y )  =  ( G `  y )  <->  A. y ( y  e. 
Pred ( R ,  A ,  X )  ->  ( F `  y
)  =  ( G `
 y ) ) )
5 predreseq.1 . . . . . . 7  |-  X  e. 
_V
6 vex 2791 . . . . . . . 8  |-  y  e. 
_V
76elpred 24177 . . . . . . 7  |-  ( X  e.  _V  ->  (
y  e.  Pred ( R ,  A ,  X )  <->  ( y  e.  A  /\  y R X ) ) )
85, 7ax-mp 8 . . . . . 6  |-  ( y  e.  Pred ( R ,  A ,  X )  <->  ( y  e.  A  /\  y R X ) )
98imbi1i 315 . . . . 5  |-  ( ( y  e.  Pred ( R ,  A ,  X )  ->  ( F `  y )  =  ( G `  y ) )  <->  ( (
y  e.  A  /\  y R X )  -> 
( F `  y
)  =  ( G `
 y ) ) )
109albii 1553 . . . 4  |-  ( A. y ( y  e. 
Pred ( R ,  A ,  X )  ->  ( F `  y
)  =  ( G `
 y ) )  <->  A. y ( ( y  e.  A  /\  y R X )  ->  ( F `  y )  =  ( G `  y ) ) )
11 impexp 433 . . . . 5  |-  ( ( ( y  e.  A  /\  y R X )  ->  ( F `  y )  =  ( G `  y ) )  <->  ( y  e.  A  ->  ( y R X  ->  ( F `
 y )  =  ( G `  y
) ) ) )
1211albii 1553 . . . 4  |-  ( A. y ( ( y  e.  A  /\  y R X )  ->  ( F `  y )  =  ( G `  y ) )  <->  A. y
( y  e.  A  ->  ( y R X  ->  ( F `  y )  =  ( G `  y ) ) ) )
134, 10, 123bitri 262 . . 3  |-  ( A. y  e.  Pred  ( R ,  A ,  X
) ( F `  y )  =  ( G `  y )  <->  A. y ( y  e.  A  ->  ( y R X  ->  ( F `
 y )  =  ( G `  y
) ) ) )
14 df-ral 2548 . . 3  |-  ( A. y  e.  A  (
y R X  -> 
( F `  y
)  =  ( G `
 y ) )  <->  A. y ( y  e.  A  ->  ( y R X  ->  ( F `
 y )  =  ( G `  y
) ) ) )
1513, 14bitr4i 243 . 2  |-  ( A. y  e.  Pred  ( R ,  A ,  X
) ( F `  y )  =  ( G `  y )  <->  A. y  e.  A  ( y R X  ->  ( F `  y )  =  ( G `  y ) ) )
163, 15syl6bb 252 1  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  X ) )  =  ( G  |`  Pred ( R ,  A ,  X ) )  <->  A. y  e.  A  ( y R X  ->  ( F `
 y )  =  ( G `  y
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    |` cres 4691    Fn wfn 5250   ` cfv 5255   Predcpred 24167
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263  df-pred 24168
  Copyright terms: Public domain W3C validator