Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preduz Unicode version

Theorem preduz 24585
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )

Proof of Theorem preduz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2825 . . . . . 6  |-  x  e. 
_V
21elpred 24562 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <  N ) ) )
3 eluzelz 10285 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  x  e.  ZZ )
4 eluzelz 10285 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
5 zltlem1 10117 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ )  ->  ( x  <  N  <->  x  <_  ( N  - 
1 ) ) )
63, 4, 5syl2anr 464 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( x  <  N  <->  x  <_  ( N  -  1 ) ) )
76pm5.32da 622 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) ) ) )
8 eluzel2 10282 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
9 eluz1 10281 . . . . . . . 8  |-  ( M  e.  ZZ  ->  (
x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
108, 9syl 15 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  ( ZZ>= `  M )  <->  ( x  e.  ZZ  /\  M  <_  x ) ) )
1110anbi1d 685 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <_  ( N  -  1 ) )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
127, 11bitrd 244 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
x  e.  ( ZZ>= `  M )  /\  x  <  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
132, 12bitrd 244 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( (
x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  - 
1 ) ) ) )
14 peano2zm 10109 . . . . . . 7  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
154, 14syl 15 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  -  1 )  e.  ZZ )
168, 15jca 518 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ ) )
1716biantrurd 494 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  (
( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
1813, 17bitrd 244 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) ) )
19 elfz2 10836 . . . 4  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
20 df-3an 936 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ  /\  x  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ ) )
2120anbi1i 676 . . . 4  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( ( M  e.  ZZ  /\  ( N  -  1
)  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
22 anass 630 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
23 anass 630 . . . . . 6  |-  ( ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) )  <-> 
( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) )
2423anbi2i 675 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( x  e.  ZZ  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) ) ) )
2522, 24bitr4i 243 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  x  e.  ZZ )  /\  ( M  <_  x  /\  x  <_  ( N  -  1 ) ) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2619, 21, 253bitri 262 . . 3  |-  ( x  e.  ( M ... ( N  -  1
) )  <->  ( ( M  e.  ZZ  /\  ( N  -  1 )  e.  ZZ )  /\  ( ( x  e.  ZZ  /\  M  <_  x )  /\  x  <_  ( N  -  1 ) ) ) )
2718, 26syl6bbr 254 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( x  e.  Pred (  <  , 
( ZZ>= `  M ) ,  N )  <->  x  e.  ( M ... ( N  -  1 ) ) ) )
2827eqrdv 2314 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  Pred (  <  ,  ( ZZ>= `  M
) ,  N )  =  ( M ... ( N  -  1
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   1c1 8783    < clt 8912    <_ cle 8913    - cmin 9082   ZZcz 10071   ZZ>=cuz 10277   ...cfz 10829   Predcpred 24552
This theorem is referenced by:  prednn  24586  prednn0  24587  uzsinds  24601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-n0 10013  df-z 10072  df-uz 10278  df-fz 10830  df-pred 24553
  Copyright terms: Public domain W3C validator