MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preleq Structured version   Unicode version

Theorem preleq 7573
Description: Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
preleq  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem preleq
StepHypRef Expression
1 preleq.1 . . . . . . 7  |-  A  e. 
_V
2 preleq.2 . . . . . . 7  |-  B  e. 
_V
3 preleq.3 . . . . . . 7  |-  C  e. 
_V
4 preleq.4 . . . . . . 7  |-  D  e. 
_V
51, 2, 3, 4preq12b 3975 . . . . . 6  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
65biimpi 188 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
76ord 368 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =  C  /\  B  =  D )  ->  ( A  =  D  /\  B  =  C ) ) )
8 en2lp 7572 . . . . 5  |-  -.  ( D  e.  C  /\  C  e.  D )
9 eleq12 2499 . . . . . 6  |-  ( ( A  =  D  /\  B  =  C )  ->  ( A  e.  B  <->  D  e.  C ) )
109anbi1d 687 . . . . 5  |-  ( ( A  =  D  /\  B  =  C )  ->  ( ( A  e.  B  /\  C  e.  D )  <->  ( D  e.  C  /\  C  e.  D ) ) )
118, 10mtbiri 296 . . . 4  |-  ( ( A  =  D  /\  B  =  C )  ->  -.  ( A  e.  B  /\  C  e.  D ) )
127, 11syl6 32 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( -.  ( A  =  C  /\  B  =  D )  ->  -.  ( A  e.  B  /\  C  e.  D ) ) )
1312con4d 100 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  e.  B  /\  C  e.  D )  ->  ( A  =  C  /\  B  =  D )
) )
1413impcom 421 1  |-  ( ( ( A  e.  B  /\  C  e.  D
)  /\  { A ,  B }  =  { C ,  D }
)  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2957   {cpr 3816
This theorem is referenced by:  opthreg  7574  dfac2  8012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404  ax-reg 7561
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-br 4214  df-opab 4268  df-eprel 4495  df-fr 4542
  Copyright terms: Public domain W3C validator