Mathbox for Frédéric Liné < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preorel Unicode version

Theorem preorel 25225
 Description: A preset is a relation. (Contributed by FL, 18-May-2011.)
Assertion
Ref Expression
preorel PresetRel

Proof of Theorem preorel
StepHypRef Expression
1 isprsr 25224 . . 3 PresetRel PresetRel
21ibi 232 . 2 PresetRel
32simp1d 967 1 PresetRel
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 934   wcel 1684   wss 3152  cuni 3827   cid 4304   cres 4691   ccom 4693   wrel 4694  PresetRelcpresetrel 25215 This theorem is referenced by:  pre1befi2  25231  pre2befi2  25232  preotr2  25235  dupre1  25243  mxlmnl2  25270 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-co 4698  df-res 4701  df-prs 25223
 Copyright terms: Public domain W3C validator